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Abstract—Nowadays, vehicles have been increasingly adopt-
ed as participants in many spatial crowdsourcing (SC) appli-
cations. Similar to other SC applications, location privacy is of
great concern to vehicle workers as they are required to disclose
their own location information to servers to facilitate the
utilities of SC services. Traditional location privacy protection
mechanisms cannot be directly applied to vehicle-based SC
since they assume workers’ location on a 2-dimensional plane,
which does not take into account the features of vehicle
workers’ mobility in vehicle road networks. Accordingly, in
this paper, we aim at addressing issues related to Vehicle-based
spatial crowdsourcing Location Privacy (VLP) in vehicle road
networks. Our objective is to design a location obfuscation
strategy to minimize the loss of quality-of-service (QoS) due
to task distribution with location obfuscation, while guaran-
teeing geo-indistinguishability to be satisfied. Considering the
computational complexity of the VLP problem, by resorting
to discretization, we approximate VLP to a linear program-
ming problem that can be solved by existing well-developed
approaches (such as the simplex method). To further improve
the time efficiency, we reduce the number of constraints in VLP
by exploiting key features of geo-indistinguishability in vechicle
road networks (such as transitivity). Finally, our experimental
results demonstrate that our approach can achieve a reasonable
approximation of the minimum QoS loss with location privacy
protected, and also outperforms a known state-of-the-art loca-
tion obfuscation strategy in terms of both QoS and privacy.

Keywords-Location privacy; spatial crowdsourcing; geo-
indistinguishability;

I. INTRODUCTION

Spatial Crowdsourcing (SC) [1] has emerged as a new
mode of crowdsourcing to enable requesters to outsource
their spatial tasks (i.e., tasks related to a location) to a set
of mobile workers. In SC, task requesters register through a
centralized server and publish tasks with target locations or
spatial routes. If a worker accepts the tasks, he/she needs to
physically travel to the tasks’ location to perform the tasks.
In the last few years, SC has been applied to many different
domains, such as smart cities [2] and environmental sensing
[3]. Particularly, with the advent of intelligent transport sys-
tem, vehicle-based spatial crowdsourcing (VSC) is evolving
rapidly [4]. For example, many recent studies have proposed
to use vehicle crowdsourcing workers as mobile agents to
help maintain vehicle ad hoc networks (VANETs), for tasks

such as data dissemination and query processing (e.g., [4]–
[6]). In some other vehicle-related applications, VSC has
been used for data sharing and collection [7], or to improve
traditional transportation systems such as Uber [4].

To ensure that tasks are completed in a timely fashion
and vehicle workers’ traveling is cost-effective, usually, a
server in VSC matches available workers with tasks that
have the shortest path distance (ShPD) to the workers [8]–
[10]. To this extent, workers are required to disclose their
locations to the server in real time. Such location information
exposure, however, may lead to privacy breaches not only
related to the whereabouts of a vehicle, but also related to
other sensitive information, e.g., home, sexual preferences,
religious inclinations, etc [11].

In fact, location privacy research has gained great at-
tention over the last decade, and a variety of location
privacy protection strategies have been developed, such as
k-anonymity [12]–[14], cloaking [15], [16], and pseudonym
based methods [17]. Particularly, the location obfuscation
approaches, which allow users to generate and report dummy
locations that look equally likely to be the true location,
have been widely used for protecting location privacy due to
their high efficiency and effectiveness in various applications
[18]–[26].

As a growing effort aims to address the location pri-
vacy issues via location obfuscation, a formal notion of
location privacy, namely Geo-Indistinguishability (or Geo-
I), was introduced by Andrés et al. recently [27]. Geo-
I can be considered as a generalization of the statistical
notion differential privacy [28]. According to Geo-I, if two
locations are geographically close, they will have similar
probabilities to generate a certain reported location. In the
other words, the reported location will not provide enough
information to an adversary to distinguish the true location
among nearby ones. Subsequent to this notion of Geo-I,
a variety of improved location obfuscation methods have
been proposed [23]–[26]. Particularly, considering that user-
s’ location privacy is usually protected at the expense of
quality of service (QoS), some of these works introduce
optimization-based approaches (e.g., linear programming) to
minimize the QoS loss and still preserve privacy [23].
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Figure 1. An example of location obfuscation on vehicle road map.

In most of these approaches, both QoS loss and privacy
metrics are defined to be positively correlated to the Eu-
clidean distance between the true location and obfuscated
location [18], [19], [23]–[25], [27]. Such measure can be
applied to scenarios wherein workers are able to move
freely on a 2-dimensional (2-D) plane, where the shortest
path distance between any pair of points is defined as
their Euclidean distance. However, compared with traditional
mobile workers (i.e., human beings), workers’ mobility in
VSC is more structured since vehicles have to operate on a
vehicle road network (or road network) and usually cannot
move to their destination on a straight line. This, in many
cases, leads to a significant different sensitivity of QoS
loss to location obfuscation. Figure 1(a)(b) provides two
examples, where in both figures, P represents the vehicle’s
true location, A and B represent two reported locations after
obfuscation, whereas Q represents the task location:
Example I (Figure 1(a)): A and B have the same Euclidean
distance to both P and Q, indicating that, on a 2D plane, the
two reported location points introduce the same estimation
error of path distance (or QoS loss) from P to Q. However,
on the road map, being reported at A or B is different: both
B and P need to take a detour to reach Q, while A can
reach Q almost with a straight line. Hence, the QoS loss
generated by A is much higher than that of B.
Example II (Figure 1(b)): Compared with B, A has a longer
Euclidean distance to P but shorter Euclidean distance to Q.
Hence, the two reported location points offer different QoS
loss in 2D plane. However, since A and B have the same
path distance to Q, the QoS loss of the two points on the
vehicle road map will be the same.

Considering the different features of vehicle workers’
mobility in a road network than in a 2D plane, in this paper,
we aim to solve the Vehicle based spatial Crowdsourcing
Location Privacy (VLP) problem in a road map. More
precisely, we model the road map by a weighted directed
graph and assume that both workers’ and tasks’ locations are
the points on the graph. We consider a location obfuscation
approach under which each worker is allowed to report
an obfuscated location instead of his/her true location and
the obfuscated location is probabilistically distributed over
the graph. Our objective is to determine the obfuscated (or

reported) location’s probability distribution over the graph
(so-called location obfuscation strategy), such that 1) the
QoS loss is minimized and 2) Geo-I is satisfied. Specifically,
for each vehicle, we define QoS loss as the expected esti-
mation error of the shortest path distance from the vehicle
to all the tasks. As for privacy, instead of adopting the
Geo-I defined in [27], which is Euclidean distance based,
we redefine the notion of Geo-I based on path distance in
directed weighted graphs (details can be found in Definition
2.1). This correction, however, increases the complexity of
VLP from an algorithmic perspective.

We start by discussing VLP in a general case, where the
probability distribution of a reported location is a general
function defined over the whole graph. Considering the
problem’s computational intractability, we approximate VLP
via discretization: Each edge in the graph is partitioned into
small intervals and the locations within each interval don’t
need to be differentiated. The approximated VLP, called
Discretized VLP or D-VLP, can be then formulated as a
linear programming problem. For theoretical interests, we
also derive a lower bound for VLP. By comparing this lower
bound with the optimal solution of D-VLP, we can check
the gap between the optimal solutions of D-VLP and VLP.

Note that Geo-I, as a privacy requirement, generates
O(K3) constraints in D-VLP (K denotes the amount of
road intervals partitioned in D-VLP), leading to a high
computation cost in linear programming [29]. Fortunately,
by exploiting important features of Geo-I in road network
(e.g., transitivity described in Property 3.2), we prove
that, instead of constraining all pairs of intervals by Geo-I,
constraining adjacent intervals in the graph will be sufficient
to keep the optimality, which significantly improves the
time efficiency of our approach.

With respect to performance, results based on a dataset
of taxi cabs’ trajectory in Rome, Italy [30] demonstrate
that our approach outperforms a state-of-the-art location
obfuscation mechanism [23] in terms of both QoS loss and
privacy (e.g., on average reduce the QoS loss by 12.35%
and increase the expected error from adversary by 6.91%).
In addition, we show that D-VLP offers a reasonably good
approximation with VLP in term of the QoS loss. Finally,
we compare the computation time for solving D-VLP with
and without our proposed constraint reduction method, from
which we demonstrate our approach can significantly reduce
the number of constraints led by Geo-I and hence improve
the time efficiency for D-VLP (on average by 87.9%).

In summary, our contributions include:
1) We formulate a new problem called the VSC Location
Privacy (VLP) problem, of which our objective is to mini-
mize the QoS loss of VSC without compromising workers’
location privacy. We start discussing VLP in a general case
and provide a theoretical lower bound of the QoS loss in
VLP.
2) Considering the computational intractability of VLP,



we approximate VLP to a linear programming problem
by discretization. We then propose a constraint reduction
approach to further improve the time efficiency for solving
the LP.
3) We conduct a simulation based on real trace to test
the performance our location obfuscation approach. The
simulation results demonstrate that our approach can achieve
the optimal QoS closely, and also outperforms one existing
2D plane-based method in terms of both QoS and privacy.

The remainder of the paper is organized as follows: We
introduce the model and the VLP problem in Section II and
propose a time efficient solution in Section III. In Section
IV, we test the performance of our approach. Finally, we
present related work in Section V and conclude in Section
VI.

II. MODEL AND PROBLEM FORMULATION

In this section, we first introduce the model, including
notations and assumptions that will be used throughout the
paper in Section II-A. Based on the model, we then formally
formulate the VLP problem in Section II-B.

A. Model

We consider a scenario where a server needs to estimate
the shortest path distance (ShPD) from a vehicle worker (or
worker) to a spatial task with the location specified in a road
network. Like [31], we can represent the road network by
a set of roads. When a road intersects, furcates, joins with
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Figure 2. Edge partition.

other roads, or turns
into a different direc-
tion, a connection is
created (as shown in
Figure 2). These con-
nections divide road-
s into multiple road
segments, which on-
ly connect with oth-
er road segments at
their end points. Ac-
cordingly, the road network can be represented by a weighted
directed graph G = (V, E), where V denotes the connection
set and E ⊆ V×V denotes the route segment (edge) set. Each
edge e ∈ E is directed, presented by an ordered pair (vse, v

e
e)

(vse, v
e
e ∈ V), where vse and vee denote the starting and the

ending connections of e, respectively. That is, vehicles can
only move from vse to vee on e in the road network. Each e
is allocated with a weight we representing the path distance
from vse to vee.

To derive the ShPD between the worker and the task,
besides the road network information and the task location,
the server also requires the worker to report his/her own
location in real time. We assume both task and worker are
located in the road network G, and let p and q denote the
worker and the task’s location, respectively. Each location

point p (or q) is represented by a ordered pair: p = (e, x),
where e represents the edge that p is located in and x (x ∈
(0, we]) denotes the path distance from p to e’s endpoint vee.

Given any pair of locations v and v′ in the road network
G, we let dG(v,v′) represent the ShPD from v to v′ in
G (in one direction). Note that dG(v,v′) and dG(v′,v) are
possibly different since they measure the traveling distance
of different paths. We let dmin

G (v,v′) denote the ShPD
between v and v′ (in two directions):

dmin
G (v,v′) = min{dG(v,v′), dG(v′,v)}. (1)

Table I lists the main notations and their descriptions used
throughout this paper.

Table I
MAIN NOTATIONS AND DEFINITION

Notation Description
G = (V, E) The road network, where V and E denote

its connection set and its edge set
we The weight (length) of edge e
p The worker’s true location
p̃ The worker’s obfuscated location
q The task location
vse (vee) The starting (ending) point of edge e
e(p) (e(q)) The edge that p (q) is positioned in
dG(v,v′) The ShPD from location v to location

v′ in G (in one direction)
dmin
G (v,v′) The ShTD between location v and

location v′ in G (in two directions)
∆dG (p, p̃;q) The difference between dG(p,q) and

dG(p̃,q)
∆dG (p, p̃;q) A lower bound of ∆dG (p, p̃;q) defined

by Equations (31)–(34)
fP (p) (fQ(q)) The prior PDF of p (q)
fP̃ (p̃|P = p) The conditional PDF of the obfuscated

location p̃ given the true location p

Threat Model: a) Worker. We assume an untrusted server
(e.g., a remote server in the cloud [10]), which informa-
tion can be possibly disclosed or leaked to an adversary.
To maintain location privacy, the worker will report an
obfuscated location p̃ instead of his/her true location p,
where p̃ is probabilistically determined. We use random
variables P and P̃ to represent the worker’s true and
obfuscated location, respectively. When reporting the ob-
fuscated location, the worker’s true location is given, i.e.,
P = p, and hence the reported location distribution can
be described by a conditional PDF fP̃ (p̃|P = p), where∑
e∈E

∫
[0,we]

fP̃ (p̃|P = p)dx = 1. The obfuscation strategy
of the worker is essentially the collection of conditional
PDFs given all possible p

F = {fP̃ (p̃|P = p)|p = (e, x), e ∈ E , x ∈ (0, we]} . (2)



b) Adversary. The location of the targeted worker from
the adversary is assumed to be estimated by a probabilistic
model. More precisely, given a reported location p̃ from the
worker, the adversary tries to find the true location p by
calculating p’s probability distribution. Here, we consider
the worst-case scenario, where the adversary has full infor-
mation about the worker’s obfuscation strategy F and the
worker’s prior PDF fP (p). Then, given the reported p̃, the
adversary can derive the PDF of the true location p by the
Bayes’ Theorem [32]:

fP

(
p|P̃ = p̃

)
=

fP̃ (p̃|P = p) fP (p)∫
G fP̃ (p̃|P = p′) fP (p′) dp′

(3)

B. Problem Formulation
Before formulating the problem, we first define the two

metrics that are considered for the location obfuscation
strategy: privacy and QoS loss.

1) Privacy: We aim to achieve quasi-indistinguishability
or Geo-Indistinguishability (Geo-I) [27] for any pair of
locations that are close to each other. Geo-I corresponds to a
generalized version of the well-known concept of differential
privacy. The idea of Geo-I on a 2D plane is to require
a small change of a single user’s location, measured by
Euclidean distance, so as not to affect the distribution of
his/her reported location too much. Following this idea, we
redefine Geo-I on a weighted directed graph in Definition
2.1, where we measure the difference between any pair of
locations by their ShPD on graph, rather than their Euclidean
distance. Particularly, for each pair of locations, we consider
the ShPD in both directions and pick up the shorter one as
the measure of privacy.

Definition 2.1: A location obfuscation strategy satisfies
(ε, r)-Geo-I if and only if for any pair of true locations pi
and pl such that dmin

G (pi,pl) ≤ r and for any obfuscated
location p̃,

fP

(
pi|P̃ = p̃

)
fP

(
pl|P̃ = p̃

) ≤ eεdmin
G (pi,pl)

fP (pi)

fP (pl)
, (4)

where r is the radius of the obfuscation area and ε is the
parameter to quantify how much information of the true
location will be disclosed according to the reported location,
where higher ε implies more information to be disclosed.

According to Equation (3), Equation (4) can be rewritten
as

fP̃ (p̃|P = pi) ≤ eεd
min
G (pi,pl)fP̃ (p̃|P = pl) . (5)

2) QoS loss: Given the worker’s obfuscated location p̃,
his/her true location p, and the task location q, we measure
the QoS loss by the estimation error of ShPD to the task
location q, which, more precisely, is defined as the difference
between the estimated ShPD dG(p̃,q) and the true ShPD
dG(p,q):

∆dG (p, p̃;q) = |dG(p,q)− dG(p̃,q)| . (6)
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Figure 3. Derivation of dG(p,q) under three cases.

We now analyze how the obfuscated location will affect
the accuracy of estimated ShPD. As opposed to 2D plane,
the QoS loss in a vehicle road map is highly impacted by
the topology of the network. Here, we first derive dG(p,q)
by considering the following two cases (we use e(q) and
e(p) to represent the edges that q and p are located in)

C1 1) When e(q) 6= e(p) (Figure 3(a)), or
2) When e(q) = e(p) but p has shorter ShPD to its

endpoint of e(p), vee(p), than q (Figure 3(b)):
In this case, the worker’s traveling path has to first reach
the current edge’s endpoint vee(p), then the starting point
of q’s edge, vse(q), and finally the destination location
q. Hence, the ShPD from p to q is calculated by

dG(p,q)

= dG

(
p, vee(p)

)
+ dG

(
vee(p), v

s
e(q)

)
+ dG

(
vse(q),q

)
= dG

(
vee(p), v

s
e(q)

)
+ xp + le(q) − xq. (7)

C2 When e(q) = e(p) and p has longer path distance
to the edge’s endpoint vee(p) than q (Figure 3(c)), the
ShPD from p to q is

dG (p,q) = dG

(
p, vee(p)

)
− dG

(
q, vee(p)

)
(8)

= xp − xq (9)

A similar derivation can be applied to dG(p̃,q). Consider-
ing the possible (p,q) (and (p̃,q)) in the above two cases,
we can derive ∆dG (p, p̃;q) as

∆dG (p, p̃;q) (10)

=


∣∣∣dG(vee(p)

, vs
e(q)

)− dG(vee(p̃)
, vs

e(q)
) + xp − xp̃

∣∣∣ C(1, 1)∣∣∣dG(vee(p)
, vs

e(q)
) + xp + le(q) − xp̃

∣∣∣ C(1, 2)∣∣∣dG(vee(p̃)
, vs

e(q)
) + xp̃ + le(q) − xp

∣∣∣ C(2, 1)∣∣xp̃ − xp∣∣ C(2, 2)

,

where C(i, j) represents when (p,q) is in case i and (p̃,q)
is in case j.

In addition, we assume that the task location q won’t
be exposed to the worker before the worker selects his/her
obfuscated location. The worker however has the prior dis-
tribution of the task, fQ(q), based on the historical record,
where Q denotes the random variable to describe the task
location. Then, given the location obfuscation approach F ,



the worker can obtain its expected estimation error of ShPD
(QoS loss):

E
(

∆dG
(
P, P̃ ;Q

))
(11)

=

∫ ∫ ∫
∆dG (p, p̃;q) fQ(q)fP (p)fP̃ (p̃|P = p)dp̃dqdp

Problem Formulation. Based on our definition of Geo-I (E-
quation (5)) and the QoS loss (Equation (11)), we formulate
the VSC Location privacy Protection (VLP) problem as:

min E
(

∆dG

(
P, P̃ ;Q

))
(12)

s.t. fP̃ (p̃|P = pi) ≤ eεd
min
G (pi,pl)fP̃ (p̃|P = pl) ,

∀pi,pl, p̃ in G, with dmin
G (pi,pl) ≤ r. (13)

The objective of VLP is to determine each location obfus-
cation strategy fP̃ (p̃|P = p) in F such that the estimation
error of ShPD is minimized (Equation (12)) and (ε, r)-Geo-I
is satisfied (Equation (13)).

However, finding the optimal fP̃ (p̃|P = p) is computa-
tional intractable as it is difficult to describe fP̃ (p̃|P = p) (a
general continuous function) with finite number of decision
variables. As workers are mostly highly dynamic, and hence
are required to update their location information in a timely
fashion, it is of great importance to find a location obfusca-
tion strategy that can achieve near-minimum QoS loss with
low time complexity.

III. ALGORITHM DESIGN AND ANALYSIS

In this section, we aim to design a time efficient algorithm

u1uk
...uk+1

p

p

d(p)

xe
uk

xs
uk

relative location of p

Figure 4. Edge partition.

for VLP. The basic idea is to
approximate VLP to a linear
programming problem via dis-
cretization (Section III-A). After
that, by exploring key features
of Geo-I in road networks, we
design an approach that can fur-
ther reduce the complexity of the
descretized VLP (Section III-B).
Table lists the additional nota-
tions used in this section.

A. Problem Approximation

The obfuscated location distribution in VLP is a gener-
al function defined in a continuous region, i.e., the road
network, which cannot be represented by finite number
of decision variables. As a solution, we approximate VLP
by discretization, in which we only need to consider the
obfuscated location probability in intervals instead of in a
continuous region. We denote the discretized problem by
discretized-VLP or D-VLP. More precisely, we formulate D-
VLP from VLP by the following three steps:

Table II
ADDITIONAL NOTATIONS AND DEFINITION IN SECTION III

Notation Description
uk The kth interval partitioned in G
us
k (ue

k) The starting (ending) point of uk
U The set of intervals U = {u1, ...,uK
δ The length of each partitioned interval uk
δ(p) (δ(p̃)) The relative location of p (p̃)
G′ = (U ′, E ′) The auxiliary graph describing the interval

set U , where U ′ corresponds U and E ′
corresponds the distance between adjacent
intervals in U

u′k The vertex corresponding to uk in U ′
G(ε,r)
' u′i

G(ε,r)
' u′l if Geo-I is satisfied in the

direction from u′i to u′l (Definition 3.2)

S1 Each edge is partitioned into route intervals with
length δ (as depicted in Figure 4). We let U =
{u1,u2, ...,uK} (K = |U|) denotes the set of intervals
in the road network G, and let us

k =
(
e, xsuk

)
and

ue
k =

(
e, xeuk

)
denote the two endpoints of each uk

(in edge e), where xsuk − x
e
uk

= δ. For a true location
p = (e, x) that is in uk, we call δ(p) = x − xeuk the
relative location of p in uk (0 ≤ δ(p) ≤ δ) 1.

S2 The obfuscated location p̃ is required to have the same
relative location with its true location p, i.e., δ(p) =
δ(p̃) whichever interval is p̃ in.

S3 For any pair of true locations p1 and p2 that are in the
same interval ui, the probabilities of their obfuscated
location p̃1 and p̃2 in each interval ul are the same,
i.e.,

Pr(p̃1 ∈ ul|P = p1) = Pr(p̃2 ∈ ul|P = p2) (14)

where l = 1, ...,K.
We note that Step II and Step III introduce additional

constraints to VLP, and hence they shrink the feasible region
of VLP [29], indicating that the optimal solution of D-VLP
offers an upper bound of the minimum QoS loss in VLP.

Proposition 3.1: Suppose that a pair of true locations p1

and p2 are in the same interval ui. Then, in D-VLP:
A) Given any task location q, p1 and p2 have the same
estimation error of ShPD to q, i.e.,

E
(

∆dG

(
p1, P̃1;q

))
= E

(
∆dG

(
p2, P̃2;q

))
. (15)

B) A location obfuscation strategy satisfies the (ε, r)-Geo-I
constraint for p1 if only if it satisfies the constraint for p2.

Proof: The detailed proof can be found in Appendix.

1Due to the variety of edge length, there exists some intervals with length
smaller than δ. But as δ is small enough, we won’t discuss these intervals
in the following part considering the tractability of our solution.



Proposition 3.1 indicates that we don’t need to differenti-
ate any pair of true locations within the same interval when
calculating QoS loss or checking Geo-I. Accordingly, we
can rewrite the objective function in VLP (Equation (12))
based on Proposition 3.1-A:

E
(

∆dG

(
P, P̃ ;Q

))
=
∑
i

∑
l

ci,lzi,l (16)

where zi,l represents the probability that the obfuscated
location p̃ is in ul given the true location p in ui and

ci,l =

∫
ui

∫
ul

∫
∆dG (p, p̃;q) fQ(q)fP (p)dqdp̃dp (17)

is a constant (note that ∆dG (p, p̃;q), fQ(q), fP (p) are
all known). Also, according to Proposition 3.1-B, the Geo-I
constraint in VLP (Equation (13)) can be rewritten by

zi,j − eεd
min
G (ue

i ,u
e
l )zl,j ≤ 0,∀ui,uj ,ul (18)

s.t. dmin
G (ui,ul) ≤ r

where dmin
G (ui,ul) = dmin

G (us
i ,u

e
l ). Eventually, D-VLP can

be written as a linear programming problem:

min
∑
i

∑
l

ci,lzi,j (19)

s.t. Equation (18) is satisfied. (20)

where the decision variables are Z = {zi,j}K×K . The D-
VLP can be solved by many well-developed classic methods
for linear programming such as the simplex methods [29].

B. Time Efficiency Improvement by Constraint Reduction
According to the definition of (ε, r)-Geo-I (Equation

(18)), given any obfuscated interval uj (j = 1, ...,K),
we need to set a constraint for each pair of zi,j and zl,j
(i, l = 1, ...,K), which generates O(K3) inequality con-
straints to D-VLP in total. Although linear programming is
solvable by many existing approaches, it is crucial to reduce
the huge number of constraints, which highly affects the time
efficiency for solving the linear programming problem [29].

Fortunately, there are some features of partitioned inter-
vals in road networks that can be exploited to reduce the
number of inequality constraints in D-VLP. Along these
features, we find that, to constraining all pairs of intervals
partitioned in the road network, it is sufficient to apply Geo-
I to pairs of intervals that are “adjacent” (Definition 3.1),
achieving constraint reduction.

Before describing the constraint reduction, we first intro-
duce Definition 3.1–3.2, Property 3.1–3.2, and Theorem 3.2.

Definition 3.1: (Auxiliary graph) We build a weighted
directed auxiliary graph G′ = (U ′, E ′), where the vertex set

U ′ = {u′1,u′2, ...,u′|U|} (21)

corresponds U , and if any pair of ui and ul are adjacent
in the road network and the worker can directly travel from
ui to ul, then we build a directed edge from u′i to u′l with
weight δ in G′ (Figure 5 gives an example).

u1u2u3

u
5

u
4

u 6

u'1

u'2u'3

u'
5

u'
4

u' 6

Auxiliary graph

Vehicle road network

Figure 5. Auxiliary graph.

The auxiliary graph G′ is
used to describe the relation-
ship among intervals in U ,
where the ShPD between any
pair of vertices, say u′i and u′l,
equals to the ShPD between
the corresponding intervals ui
and ul. Accordingly, checking
Geo-I between ui and ul
is equivalent to checking
Geo-I for u′i and u′l. With
the auxiliary graph, we can
directly apply some existing data structures (e.g., shortest
path trees) to help implement the constraint reduction,
where the details will be introduced in the algorithm later.

Definition 3.2: We use u′i
G(ε,r)
' u′l to denote that Geo-I

is satisfied in the direction from u′i to u′l. More precisely,

u′i
G(ε,r)
' u′l if zi,j − eεdG(ue

i ,u
e
l )zl,j ≤ 0, ∀uj .

According to Definition 2.1 and Definition 3.2, it is trivial
to obtain Property 3.1–3.2:

Property 3.1: u′i and u′l satisfies (ε, r)-Geo-I constraint

if only if u′i
G(ε,r)
' u′l and u′l

G(ε,r)
' u′i.

Property 3.2: (Transitivity) Given a shortest path from
u′i to u′k that is composed of two edges in G′, say (u′i,u

′
l)→

(u′l,u
′
k), then:

u′i
G(ε,r)
' u′l and u′l

G(ε,r)
' u′k ⇒ u′i

G(ε,r)
' u′k. (22)

Proof: ∀u′j , if u′i
G(ε,r)
' u′l and u′l

G(ε,r)
' u′k, we have

u′i
G(ε,r)
' u′l ⇒ zi,j ≤ eεdG(ue

i ,u
e
l )zl,j (23)

u′l
G(ε,r)
' u′k ⇒ zl,j ≤ eεdG(ue

l ,u
e
k)zk,j . (24)

from which we can obtain that

zi,j ≤ eεdG(ue
i ,u

e
l )zl,j ≤ eε(dG(ue

i ,u
e
l )+dG(ue

l ,u
e
k))zk,j

= eε(dG(ue
i ,u

e
k))zk,j (25)

indicating that u′i
G(ε,r)
' u′k.

In Theorem 3.2, we generalize transitivity by induction:

Theorem 3.2: Given any pair of vertices u′1 and u′K ,
suppose that a shortest path from u′1 to u′K is composed
of K − 1 edges in G′: (u′1,u

′
2)→ ...→

(
u′K−1,u

′
K

)
, then

u′k
G(ε,r)
' u′k+1, (k = 1, ...,K − 1)⇒ u′1

G(ε,r)
' u′K (26)

Proof: Base case: When K = 3, Theorem 3.2 is exactly
the same as transitivity that we have obtained in Property
3.2.
Step case: Assuming that the statements holds for K = n,

then when K = n+1, given u′k
G(ε,r)
' u′k+1, (k = 1, ..., n),

we have u′k
G(ε,r)
' u′k+1, (k = 1, ..., n− 1)⇒ u′1

G(ε,r)
' u′n,



then u′1
G(ε,r)
' u′n and u′n

G(ε,r)
' u′n+1 ⇒ u′1

G(ε,r)
' u′n+1,

indicating that the statement holds for K = n+ 1.
According to Theorem 3.2, to provide a sufficient condition
for the Geo-I constraint for any pair of vertices u′i and u′l
in U’, we can 1) first find the shortest path between u′i and
u′l in both directions (from u′i to u′l and from u′l to u′i),
and then 2) select the shortest path between the two paths,

say P , and set the Geo-I constraint u′k
G(ε,r)
' u′k+1 for each

pair of adjacent vertices u′k and u′k+1 in P . We repeat such
process for all pairs of vertices in G′.

In the above process of constraint reduction, any con-

straint constructed by adjacent vertices, say u′k
G(ε,r)
' u′k+1,

won’t shrink the feasible region of the D-VLP, since u′k and
u′k+1 themselves also need to satisfy the Geo-I constraint
(according to Property 3.1). Hence, the optimality of D-VLP
will not be lost by the constraint reduction.

Algorithm 1: Pseudo-code of constraint reduction.
input : G = (V, E)
output : Ucon = {ui,j}|U|×|U |

1 Initialize Ucon by 0;
2 Initialize the sets U ′In,1, ...,U

′
In,|U|, U

′
Out,1, ...,U

′
Out,|U| by empty;

3 for each ui ∈ V do
4 Build both SPT-In(i) and SPT-Out(i);
5 for each uj ∈ V\ui do
6 if ShPD(ui, uj) ≤ ShPD(uj , ui) then
7 add u′j to U ′Out,i;

8 otherwise do
9 add u′j to U ′In,i;

10 for each u′j ∈ U ′Out,i do
11 Traverse the edges in the path from u′j to u′i and let

ul,k = 1 if (u′l,u
′
k) is an edge in the path;

12 for each u′j ∈ U ′I,i do
13 Traverse the edges in the path from u′j to u′i and let

ul,k = 1 if (u′l,u
′
k) is an edge in the path;

14 return Ucon;

Since each pair of adjacent vertices in P must be the two
endpoints of an edge in G′, the number of possible adjacent
vertices in all shortest paths cannot exceed M (M denotes
the number of edges in the auxiliary graph G′, i.e., M =
|E ′|). For each obfuscated vertex u′j (j = 1, ...,K) (i.e., the
obfuscated location is in uj), instead of building constraint
for each pair of vertices in U ′, we only need to build up to
M constraints for the pairs that are adjacent. Hence, the total
number of constraints to be added is O(KM). According to
the trace of some real world road networks, M is close to K,
where the detailed observation will be introduced in Section
IV (Figure 11). Accordingly, the number of constraints in D-
VLP can be reduced from O(K3) to approximately O(K2).

Algorithm 1 gives the pseudo code of our constraint
reduction method: We use an indicator matrix Ucon =
{ui,j}K×K to represent whether a constraint for u′i and u′j
is added: if the pair {u′i,u′j} needs a constraint, ui,j = 1;
otherwise, ui,j = 0. To find the shortest path between all

u'i

(a) SPT-Out(i)

u'i

(b) SPT-In(i)

Figure 6. An example of the two types of SPTs for the vertex u′i (in both
figures, U ′In,i and U ′Out,i are respectively marked by red color and blue
color).

pairs of vertices in G′, we build the shortest path trees (SPTs)
[33] rooted at each vertex u′i (i = 1, ..., |U|), respectively.

We note that the shortest path between any pair of vertices
can be in two directions and we only need to check Geo-I
for the shorter one. Here, for each u′i, we build two SPTs:
SPT-Out(i) and SPT-In(i) (as shown in Figure 6(a)(b)), in
which all the paths take u′i as the source and the destination,
respectively (line 4). After building a SPT (can be either
SPT-Out(i) or SPT-In(i)), it is unnecessary to find the path
for each vertex to (or from) u′i in the tree, since the vertex
may have a shorter path with u′i in the other tree. Hence,
before finding the paths, we categorize all the vertices in
U ′\u′i into two subsets U ′In,i and U ′Out,i based on whether
each vertex in U ′\u′i has a shorter path to (or from) u′i in
SPT-In(i) than in SPT-Out(i) (line 5-9). After the vertex
categorization, in SPT-In(i), all the paths from the vertices
in U ′In,i to u′i are collected; and in SPT-Out(i), all the paths
from u′i to the vertices in U ′Out,i are collected. Finally, for
each pair of adjacent vertices in the collected paths, we add
the corresponding constraint to D-VLP (line 10–13).
Time complexity analysis of the constraint reduction.
The constraint reduction mainly includes SPT building (line
4), vertex categorization (line 5–9), and constraint addition
(line 10–13) for each u′i (i = 1, ..., |U|). We adopt a
well-developed method Dijkstra [33] to build the SPTs,
of which the time complexity is O(M + K logK). Ver-
tex categorization requires to compare the length of each
vertex’s two paths with u′i, taking up to K comparisons.
Constraint addition requires to traverse all the edges in the
two SPTs, both of which have up to K edges. Eventually,
the time complexity of the constraint reduction method can
be calculated by

Tcr = O(K)× (O(M + K logK)︸ ︷︷ ︸
line 4

+ O(K)︸ ︷︷ ︸
line 5-9

+ O(K)︸ ︷︷ ︸
line 10–13

)

= O
(
MK + K2 logK + K2) . (27)

C. Lower Bound Derivation

For theoretical interests, we also derive a lower bound of
the minimum QoS loss in VLP via problem relaxation [29].
By comparing this lower bound with the QoS loss obtained



by our approach, we can check how close the solution can
achieve the optimal.

To derive a lower bound via problem relaxation, we need
to create a relaxed version of VLP that can be solved with
low time complexity, and meanwhile, the relaxed problem

1) has the objective function upper bounded by the QoS
loss defined in VLP (Condition A),

2) has its feasible region as a super-set of the VLP’s
feasible region (Condition B).

As such, the optimal solution of this relaxed VLP will be
a lower bound of the minimum QoS loss in VLP [29].

Following this idea, we define a relaxed VLP (denoted by
R-VLP) as follows:

min
∑
i

∑
j

c′i,jwi,j (28)

s.t. Ω(W) (W is a matrix {wi,j}M×M ) (29)

where wi,j =
∫
e(p)

∫
e(p̃)

fP̃ (p̃|P = p)fP (p)dp̃dp is the
decision variable, c′i,j =

∫
∆dG (p, p̃;q) fQ(q)dq (given

e(p) and e(p̃) are ith and jth edges respectively) is a
constant (i, j = 1, ...,M ) (as both ∆dG (p, p̃;q) and fQ(q)
are known), Ω(W) is a polyhedron defined by

Ω(W) =

W

∣∣∣∣∣∣
1∫

ei
fP (p)dp

wi,j ≤ eεdG(ei,el)∫
el

fP (p)dp
wl,j ,

∀j and dG(ei, el) ≤ r.∑
i

∑
j wi,j = 1

 ,

(30)
dG(ei, el) denotes the longest ShPD between the points in
ei and the points in el, and ∆dG (p, p̃;q) is defined by

C(1, 1) : ∆dG (p, p̃;q) (31)

=



∆dG(vee(p), v
e
e(p̃), v

s
e(q))− lep̃

if dG(vee(p), v
s
e(q)) ≥ dG(vee(p̃), v

s
e(q)) + lep̃

∆dG(vee(p̃), v
e
e(p), v

s
e(q))− le(p)

if dG(vee(p̃), v
s
e(q)) ≥ dG(vee(p), v

s
e(q)) + le(p)

0 otherwise
C(1, 2) : ∆dG (p, p̃;q) = dG(vee(p), v

s
e(q)) (32)

C(2, 1) : ∆dG (p, p̃;q) = dG(vee(p̃), v
s
e(q)) (33)

C(2, 2) : ∆dG (p, p̃;q) = 0, (34)
(different cases C(i, j) are defined in Section II-B).

Proposition 3.3: The optimal solution of R-VLP prob-
lem offers a lower bound of the minimum QoS loss in VLP.

Proof: The basic idea is to prove that Condition A&B
are satisfied in R-VLP. The detailed proof can be found in
Appendix.

R-VLP can be solved directly by applying linear program-
ming approaches such as the simplex methods [29] since its
number of constraints O(M2) is acceptable. We compare the
lower bound derived from this problem with our solution in
the performance evaluation part based a real world dataset
[30] (in Figure 8(a)(b)).

IV. PERFORMANCE EVALUATION

In this section, we turn our attention to practical applica-
tions of our location obfuscation approach. The two main
metrics we will measure include:
1) The estimation error of ShPD, which is defined in
Equation (11). We use this metric to reflect the QoS loss
of location obfuscation strategies.
2) The best guess of the adversary given the reported, or
AdvError for short [23]. Here we assume the adversary use
the optimal inference attack [26]. We adopt this metric to
reflect the privacy level that our approach can achieve, where
higher AdvError indicates higher privacy level.

Figure 7. Cabs’ location distribution.

Dataset. We test the
performance of our
approach with a re-
al world dataset, and
use the dataset pro-
vided by [30], which
records the trajec-
tories of taxi cab-
s in Rome, as tax-
i services are con-
sidered as a type
of VSC [30]. The
dataset contains GP-
S coordinates of ap-
proximately 290 taxis collected over 30 days. Figure 7
depicts the heat map of all taxi cabs’ recorded location, from
which we can observe that taxi cabs’ locations are not evenly
distributed over the city, e.g., on average taxi cabs are more
likely located in downtown than in the suburbs. Note that
cabs may have different number of records (including both
location and time stamp) in the trace. Here, we select the
120 cabs with the highest number of records in the trace
and estimate each cab’s prior probability distribution fP (p)
based on its own records. Then, we conduct a simulation
for each single cab, where we randomly pick up a location
on the road network based on the vehicle’s fP (p), and find
the obfuscated location with our approach. In addition, we
assume that the task’s (customer’s) location has the same
probability distribution with the location of all cabs [34].

A. Comparison with the lower bound

As the minimum QoS loss in VLP is within the gap
between its lower bound (derived in Section III-C) and the
QoS loss of our approach, it is interesting to check how close
our approach can achieve the optimal by comparing the QoS
achieved by our approach with the lower bound. Figure 8(a)
compares the QoS loss of our approach and the lower bound
for 120 cabs, where we set the interval size δ in the D-VLP
by 0.05km, 0.1km, and 0.15km respectively. From the figure,
we can observe that the denser we partition the road network
in the approximation algorithm, the closer our solution can
achieve the lower bound. This observation is confirmed in
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Figure 8. Performance of the cloaking strategy with different δ.
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Figure 9. Comparison of our approach with a 2D based method.

Figure 8(b), where we calculate the approximation ratio of
our approach by taking the ratio between our approach’s
QoS loss and the lower bound, and give the box plot of the
approximation ratio for 120 cabs with different δ. The figure
shows that, as δ decreases (δ = 0.15km, 0.1km, 0.05km),
the approximation ratio decreases (which are 1.17, 1.11, and
1.06, respectively). Note that when the approximation ratio
= 1, the solution achieves the optimal.

B. Comparison with 2D-plane based methods

We also compare our approach with the existing 2D based
location obfuscation methods. Here, we pick a state of the
art mechanism introduced in [23] as baseline. Note that [23]
is also a global optimization framework: given the privacy
constraint, the object is to minimize the QoS loss. Different
from our approach, this 2D-based method (or simply 2Db)
assume locations on a 2D plane and both QoS loss and
privacy are measured by the Euclidean distance2.

Figure 9(a)(b) compare the average QoS loss and AdvEr-
ror of 120 cabs by using our approach and 2Db, respectively.
Not surprisingly, our approach outperforms 2Db in both
metrics since 2Db neglects the structure feature of road
network. For example, a pair of locations with shorter
Euclidean distance may take longer path distance in the road
network.

C. Performance given different threshold values for ε

Besides testing our approach’s effectiveness, we check
how the parameter ε in Geo-I will impact the QoS loss

2Note that 2Db may choose an obfuscated location that is not included
in any edge in the network, so given an obfuscated location calculated
by 2Db, we assume that the adversary will take the location in the road
network that has the shortest Euclidean distance to this obfuscated location
as the “reported location” from the worker
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Figure 10. Performance of the cloaking strategy with different ε.

and privacy of our method in Figure 10(a)(b), in which ε is
changed from 2/km to 10/km. From the figures, we observe
that larger ε generates lower QoS loss and lower AdvError.
According to the definition of (ε, r)-Geo-I (Definition 2.1),
with higher ε (e.g., ε = 10/km), the obfuscated location
probability can be less evenly distributed over the road
network. Hence, the obfuscated location around the true
location will have higher probability to be selected, as shown
in the heat map in Figure 10(c), leading to a lower QoS loss
and a lower AdvError. In contrast, when ε is lower (e.g.,
ε = 2/km), the obfuscated location probability is required
to be more evenly distributed, as shown in the heat map
in Figure 10(c). Then, obfuscated locations with relatively
higher ShPD from (to) the true location will have higher
probability to be selected, which causes higher QoS loss and
AdvError. According to Figure 10(a)(b), we also find that
it is difficult to increase both QoS and privacy at the same
time. As expected, it is very important to take a trade-off
between the two objectives based on workers’ preference.

D. Computation time

Finally, we test how the constraint reduction (CR) method
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Figure 11. Computation time
with and without CR.

introduced in Section III-B can
improve the time efficiency of
our approach in Figure 11.
From the figure, we find that
CR largely reduces the com-
putation time (on average by
87.9%). In addition, when δ =
0.15km, 0.1km, 0.05km, the
number of edges in the aux-
iliary graph are only 56.7%,
28.4%, and 18.9% higher than
the number of vertices in the
graph, indicating that CR re-



duces the number of constraints in D-VLP from cubic to
approximately quadratic with the respect to the number of
intervals partitioned in D-VLP.

V. RELATED WORK

During the last decade, a variety of location privacy
protection approaches have been developed. Many of these
methods allow users to hide his identity from the server, such
as k-anonymity (i.e., a user’s location cannot be distinguished
with the other k − 1 users) [12]–[14], cloaking (i.e., the
accurate location is hidden in a obfuscated region) [15], [16].
Some other works let users use pseudonyms to interact with
the system, where the users can change their pseudonyms
without being traced by the system [17]. These approaches
cannot be applied to VSC, since in VSC workers’ identity
has to be known by the server for task distribution. Although
obfuscation has been also widely used for protecting location
privacy [18]–[22], [26]. It introduces errors to location-based
services, and hence one key problem is how to establish a
trade-off between QoS and privacy. For example, the strate-
gies introduced in [23]–[25] follow a global optimization
framework, which QoS (or privacy) constraints are satisfied.

Differential privacy [35]–[37] has also been applied to
address location privacy issues, though many of these works
are used to protect aggregate location information [38]–[40],
which is much different from the problem we discuss in this
paper. As apposed to requiring low sensitivity of aggregate
output to a single individual change, the notion of Geo-I
we adopt in this paper sets constraints such that any small
change of location will not have a significant effect on
adversary’s observation. Following this notion, many Geo-I
based location obfuscation strategies have been proposed
[23]–[26]. Recently, some researchers have started working
on location privacy issues of some specific location based
services (LBS), such as mobile spatial crowdsourcing (SC)
[8]–[10]. Similar to our work, most of these methods target
maximizing the reacheability from workers to spatial tasks
without compromising workers’ location privacy. However,
all these works assume both workers’ and tasks’ location
on a 2D plane. As we have demonstrated that 2D based
strategy cannot effectively achieve high QoS and high
privacy in a vehicle road network, these existing approaches
cannot be applied to VSC.

To date, the work closest to ours is [23]. [23] proposes an
optimal location obfuscation mechanism with regard to Geo-
I based on LP. However, their approach still assumes users’
locations on a 2D plane and hence cannot be applied in VSC.
On the other hand, although [23] also proposes an approx-
imation technique to reduce the number of constraints in
LP, their approach may not guarantee optimal solutions as it
shrinks the LP’s feasible region. Instead, by exploiting some
unique features of Geo-I on road networks, our constraint
reduction approach can significantly reduce the computation
time without losing the optimality of the original problem.

VI. CONCLUSIONS
In this paper, we designed a location obfuscation strat-

egy to minimize the QoS loss of task distribution without
compromising workers’ location privacy, as defined by Geo
Indisitiguishability constraints. Through discretization, we
approximated our obfuscation problem as a linear program-
ming problem that can be solved and further reduce its com-
plexity by constraint reduction. Finally, our experimental re-
sults demonstrate that our approach can well approximate the
optimal QoS, and also outperforms state-of-the-art location
obfuscation strategy in terms of both QoS and privacy.

We see a number of promising directions for this research
work. For exmaple, we plan to further investigate VSC
privacy frameworks in heterogeneous settings, in which
users may have different QoS preferences over different
regions in the road network, e.g., some workers may tolerate
less QoS loss in downtown than in suburban areas. Another
direction we can explore is to further increase the scalability
of our current approach. Although the time efficiency of
our current approach has been improved significantly, it
still brings challenges when applying our approach to large
scale systems that are composed of a huge number of
vehicle workers, especially when workers’ interaction needs
to be considered. One potential solution is to implement our
approach in a decentralized way by resorting to optimization
decomposition techniques.

APPENDIX
A. Proof of Proposition 3.1

Proof: A) Step III ensures p1 and p2 have the same
obfuscated location probability distribution over different
intervals. ∀uk, suppose there exist obfuscated locations p̃1

and p̃2 (for p1 and p2 respectively) in uk,
∆dG (p1, p̃1;q) = |dG(us

k,q) + δ(p1)− dG(us
i ,q)− δ(p̃1)|

∆dG (p2, p̃2;q) = |dG(us
k,q) + δ(p2)− dG(us

i ,q)− δ(p̃2)|
Then, according to Step II, δ(p1) = δ(p̃1), δ(p2) = δ(p̃2),
implying that ∆dG (p1, p̃1;q) = ∆dG (p2, p̃2;q).
Finally, we obtain that E

(
∆dG

(
p1, P̃1;q

))
=

E
(

∆dG

(
p2, P̃2;q

))
.

B) ∀uk, suppose there exists p̃1 and p̃2 in uk. For any
other true locations p′1 and p′2 such that δ(p′1) = δ(p1),
δ(p′2) = δ(p2), and p′1 and p′2 are in the same interval, we
have the following relationships:

Pr
(
P̃ = p̃1|P = p1

)
= Pr

(
P̃ = p̃2|P = p2

)
(35)

Pr
(
P̃ = p̃1|P = p′1

)
= Pr

(
P̃ = p̃2|P = p′2

)
, (36)

from which we can derive that

Pr
(
P̃ = p̃1|P = p1

)
≤ eεd

min
G (pi,pl)Pr

(
P̃ = p̃1|P = p′1

)
if only if

Pr
(
P̃ = p̃1|P = p1

)
≤ eεd

min
G (pi,pl)Pr

(
P̃ = p̃1|P = p′1

)
.



B. Proof of Proposition 3.3

Proof: We prove Proposition 3.3 by showing that R-
VLP satisfies Condition A and Condition B respectively.

1) Condition A: We first prove that ∆dG (p, p̃;q) defined
by Equations (31)-(34) is upper bounded by ∆dG (p, p̃;q)
∀p, p̃,q in all different cases: C(1, 1), C(1, 2), (2, 1), and
(2, 2) (the proof of the inequality in C(2, 2) is trivial since
∆dG (p, p̃;q) is non-negative):
C(1, 1): When dG(vee(p), v

s
e(q)) ≥ dG(vee(p̃), v

s
e(q)) + lep̃ ,

since lep̃ ≥ xp̃ − xp

∆dG (p, p̃;q)

≤ dG(vee(p), v
s
e(q))− dG(vee(p̃), v

s
e(q))− (xp̃ − xp)

≤
∣∣∣dG(vee(p), v

s
e(q))− dG(vee(p̃), v

s
e(q)) + xp − xp̃

∣∣∣
= ∆dG (p, p̃;q) (by triangle inequality)

Similar proof can be applied when

dG(vee(p), v
s
e(q)) ≥ dG(vee(p̃), v

s
e(q)) + lep̃ . (37)

C(1, 2): Since le(q) − xp̃ ≥ 0 and xp ≥ 0,

∆dG (p, p̃;q) ≤
∣∣∣dG(vee(p), v

s
e(q)) + xp

∣∣∣ ≤ ∆dG (p, p̃;q) .

C(2, 1): Since le(q) − xp ≥ 0 and xp̃ ≥ 0,

∆dG (p, p̃;q) ≤
∣∣∣dG(vee(p), v

s
e(q)) + xp̃

∣∣∣ ≤ ∆dG (p, p̃;q) .

Then, the objective function R-VLP, defined by

E
(

∆dG

(
P, P̃ ;Q

))
=

∫ ∫ ∫
∆dG (p, p̃;q) fQ(q)fP̃ (p̃|P = p)fP (p)dp̃dqdp

=
∑
i

∑
j

c′i,jwi,j (38)

offers a lower bound of E
(

∆dG

(
P, P̃ ;Q

))
as

E
(

∆dG

(
P, P̃ ;Q

))
−E

(
∆dG

(
P, P̃ ;Q

))
(39)

=

∫ ∫ ∫ (
∆dG (p, p̃;q)−∆dG (p, p̃;q)

)
× fQ(q)fP̃ (p̃|P = p)fP (p)dp̃dqdp (40)
≤ 0 (since ∆dG (p, p̃;q)−∆dG (p, p̃;q) ≤ 0).(41)

Note that E
(

∆dG

(
P, P̃ ;Q

))
is allowed to be written as∑

i

∑
j c
′
i,jwi,j since ∆dG (p, p̃;q) is relevant to the edges

that p and p̃ are positioned in, but is irrelevant to p and p̃’s
specific locations within the edges.

2) Condition B: From Equation (13) we can obtain that∫
ej

fP̃ (p̃|P = p) dp̃ ≤ eεdG(ei,el)

∫
ej

fP̃ (p̃|P = p) dp̃

(42)or equivalently,
1∫

ei
fP (p) dp

wi,j ≤
eεdG(ei,el)∫
el
fP (p) dp

wl,j . (43)

As Equation (43) is a necessary (or relaxed) condition
of the Geo-I constraint defined by Equation (13), R-VLP’s
feasible region Ω(W), defined by

Ω(W) =

W

∣∣∣∣∣∣∣
1∫

ei
fP (p)dp

wi,j ≤ eεdG(ei,el)∫
el

fP (p)dp
wl,j ,

∀j and dG(ei, el) ≤ r.∑
i

∑
j wi,j = 1

 . (44)

is a relaxed feasible region for the original VLP. The proof
is complete.
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