
RoadAdaptor: An Adaptive Obfuscation Strategy for Vehicle
Trajectory Privacy Against Spatial Correlation Aware Attacks

Chenxi Qiu

Computer Science Department

Rowan University

Glassboro, USA

qiu@rowan.edu

Li Yan

Senseable City Lab

Massachusetts Institute of Technology

Cambridge, USA

liyan_20@mit.edu

Ce Pang

Computer Science Department

Rowan University

Glassboro, USA

pangc7@students.rowan.edu

Anna C. Squicciarini

College of Information Science and

Technology

Pennsylvania State University

University Park, USA

acs20@psu.edu

Juanjuan Zhao

Shenzhen Institute of Advanced

Technology

Shenzhen, P. R. China

jj.zhao@siat.ac.cn

Chengzhong Xu

Computer and Information Science

University of Macau

Macau, P. R. China

czxu@um.edu.mo

ABSTRACT
Vehicles have been increasingly involved in a variety of location-

based services (LBS). In many LBS, vehicles have to disclose their

locations to servers to perform their services, raising some privacy

issues. Currently, one of the popular location privacy-preserving

mechanisms applied in many LBS is location obfuscation, where
mobile users are allowed to report perturbed locations instead of

their real locations to servers. However, most existing obfuscation

approaches still assume that users can move freely and indepen-

dently on a 2-dimensional (2D) plane. The 2D plane representation

is however inadequate, as vehicles’ mobility is highly correlated

with external factors, such as traffic conditions, road networks, and

even weather or road construction. This additional auxiliary infor-

mation, unfortunately, helps attackers shrink the search range of

vehicles’ locations and hence increases the risk of location exposure.

In this paper, we first develop a new inference attack algorithm

that leverages traffic information to recover target vehicles’ real

locations from obfuscated locations (generated by current location

obfuscation algorithms). We then develop a two-layer obfuscation

strategy, where in Layer 1, a vehicle’s locations are obfuscated by a

“fake” trajectory that is hard to distinguish from real trajectories,

and in Layer 2, the fake trajectory is obfuscated to double-shield

vehicles’ location privacy. Our experimental results demonstrate

that 1) the new inference attack can accurately track vehicles’ real

locations obfuscated by two state-of-the-arts obfuscation methods,

and furthermore, 2) the two-layer obfuscation algorithm can effec-

tively protect vehicles’ location privacy under the new inference

attack without compromising QoS.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SIGSPATIAL’20, November 2020, Seattle, WA, USA
© 2018 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/1122445.1122456

CCS CONCEPTS
• Security and privacy→ Security services; • Theory of com-
putation→Mathematical optimization.

KEYWORDS
location privacy, obfuscation, spatial correlation, traffic flow

ACM Reference Format:
Chenxi Qiu, Li Yan, Ce Pang, AnnaC. Squicciarini, Juanjuan Zhao, andChengzhong

Xu. 2018. RoadAdaptor: An Adaptive Obfuscation Strategy for Vehicle Tra-

jectory Privacy Against Spatial Correlation Aware Attacks. In Proceedings
of ACM Conference (SIGSPATIAL’20). ACM, New York, NY, USA, 12 pages.

https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
With ubiquitous wireless connectivity and continued advances in

positioning technologies in mobile/on-board devices, vehicles have

been increasingly participating in a variety of location-based ser-

vices (LBS), from real-time navigation (e.g., Waze [1]) to journalism

and crisis response (MediaQ [2]) and commercial transportation

systems (e.g., Uber-like platforms [3]). In most of those LBS applica-

tions, vehicles need to report their locations to servers to guarantee

high quality-of-services (QoS). This location-sharing practice en-

ables vehicle tracking, raising privacy issues that are not limited to

whereabouts of the vehicles, but may also relate to some other sen-

sitive information such as drivers’ home/working address, sexual

preferences, financial status, etc [4, 5].

To enjoy the benefit of LBS without leaking users’ sensitive infor-

mation, location privacy in LBS has become a very active research

topic [6–15]. A large body of recent work has been centered on lo-
cation obfuscation [8–12], a location privacy protection mechanism

(LPPM) in which mobile users are allowed to report perturbed loca-

tions instead of true locations to servers. Compared with traditional

cryptographic techniques [7], obfuscation has been acknowledged

to be more suitable for mobile LBS applications due to its 1) low

computational demand for mobile devices [11, 12], 2) high effec-

tiveness in protecting data privacy from server-side eavesdropping

[16], and 3) high accessibility for various service providers [8].

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

SIGSPATIAL’20, November 2020, Seattle, WA, USA Qiu et al.

“Impossible” trajectory composed
by obfuscated locations

A

B

C

D
E

F

G

Figure 1: Example: accuracy of location tracking via HMM.

Despite these merits, most existing location obfuscation ap-

proaches are still designed against simple threat models, where

users’ mobility is considered on a 2-dimensional (2D) plane and

independent from each other [8, 10, 13, 17]. Clearly, these are strong

and unrealistic assumptions, that have led to insufficient solutions

for vehicles operating in a road network. First, vehicles cannot

drive freely over roads like moving on a 2D plane. Instead, each

individual vehicle’s mobility is restricted by road network topology

and traffic regulations [18]. Second, vehicles’ mobility is spatially

correlated with other vehicles due to traffic flows. For example,

vehicles driving on the same lane are likely to follow a similar

speed [18]. Given the pervasiveness of geo-location and mobility

services, with limited effort, an attacker may get a hold of vehicle

mobility patterns, and attempt to use them as auxiliary information

to increase chances of location identification.

To demonstrate the aforementioned potential privacy issue, in

this paper, we first develop a new threat model, where an attacker

aims to recover a target vehicle’s real trajectory from its reported

(obfuscated) locations by leveraging the publicly available traffic

flow information. We model the vehicle’s mobility by a hidden
Markov model (HMM): In each round, 1) the vehicle’s actual and

obfuscated locations are considered as a hidden state and an observ-
able state, respectively, and 2) the HMM transition matrix describes

the probabilities of the vehicle traveling between the locations over

the map. With HMM, the vehicle’s real trajectory can be estimated

with a high accuracy using well-developed hidden state inference

algorithms (e.g., the Viterbi algorithm [19]). Figure 1 shows an ex-

ample of a taxicab tracking in Shenzhen mobility trace dataset [20]

using the HMM model. From the figure, we find that the vehicle’s

trajectory is estimated with a very high accuracy given each single

obfuscated location has been obfuscated with a state-of-the-art

obfuscation algorithm [13].

It is important to note that when a vehicle obfuscates its loca-

tion independently per round, the transition between its adjacent

reported locations mostly looks “impossible” (see the trajectory

{𝐴, 𝐵,𝐶, 𝐷, 𝐸, 𝐹,𝐺} in Figure 1. This unfortunately helps the in-

ference algorithms like Viterbi eliminate trajectories unlikely to

happen in traffic and hence increase the risk of location exposure.

As a countermeasure, we design a two-layer obfuscation strategy:

1) In Layer 1, the vehicle generates a “fake” trajectory. The fake

trajectory is created to follow the real local traffic flows, which

makes it hard to be eliminated by the inference algorithms.

2) In Layer 2, the fake trajectory from Layer 1 will be further ob-

fuscated by the obfuscation function, to double-field the vehicle’s

location privacy while achieving high QoS.

Besides hiding the real trajectory, the selected fake trajectory

in Layer 1 is required to guarantee high QoS, i.e., its deviation

from the vehicle’s real trajectory should be limited by a threshold.

Such a requirement, however, is non-trivial to achieve when the

vehicle’s mobility is unpredictable. For instance, a fake trajectory

originally close to the vehicle may inevitably deviate far away from

the vehicle later due to the restriction of traffic flows. As a solution,

instead of relying on a single fake trajectory, we maintain a pool of

candidate trajectories and select only one to pass to Layer 2 when

reporting. The maintenance of trajectory pool follows a similar idea

of natural selection, i.e., in each round, trajectories leading to high

privacy level and high QoS will survive and reproduce a set of new

trajectories in the next round, while other trajectories will die off

with no more contribution to the pool of further generations.

The obfuscation function in Layer 2 is designed to maximize

the privacy level of vehicles (measured by two privacy criteria:

expected inference error (EIE) [17] and geo-indistinguishability (GI)

[8]) while guaranteeing high QoS. We formulate the obfuscation

function generation (OFG) problem as a linear programming (LP)
problem. By using the angular block structure of the constraint

matrix in OFG, we then apply the Dantzig-Wolfe decomposition to

solve OFG with high time-efficiency [21].

With respect to performance, simulation results based on Shen-

zhen taxi trajectory records [20] demonstrate that: 1) Given vehicles’

locations are obfuscated by two state-of-the-art obfuscation meth-

ods [11, 17], the new threat model can accurately track vehicles’

locations, and on average, and its EIE is 87.28% lower than that of

the classic Bayesian inference attack [11, 12]. 2) The two-layer ob-

fuscation strategy can effectively protect vehicles’ location privacy

from the new attack model, e.g., its EIE is at least 499.89% higher

than the obfuscation algorithms in [11, 17].

Our contributions can be summarized as follows:

1) We build a realistic threat model for LBS that accounts for ve-

hicles’ mobility features over roads. By leveraging traffic flow in-

formation, we design a new inference attack, which can accurately

recover vehicles’ trajectories from their obfuscated locations using

the current obfuscation approaches.

2) As a countermeasure, we then develop a two-layer location obfus-

cation strategy to protect the location privacy of vehicles without

compromising the QoS, even assuming attackers can leverage traf-

fic flow information for inference.

3) We conduct a simulation based on a real-world dataset to test the

performance of our strategy. The simulation result demonstrates

the high accuracy of the new inference attack in tracking vehicles.

Furthermore, it demonstrates the effectiveness of the two-layer ob-

fuscation algorithm in protecting vehicles’ location privacy under

the new threat model.

The remainder of the paper is organized as follows: Section intro-

duces the location obfuscation framework. Section 3 introduces the

new threat model and Section 4 describes the obfuscation algorithm.

Section 5 evaluates the performance of our algorithm. Finally, Sec-

tion 6 presents the related work and Section 7 makes a conclusion.

2 FRAMEWORK
Before describing the threat model and our solution, we first intro-

duce the general framework of location obfuscation used in this

paper and numerous prior studies [8, 10, 11, 13, 17]. For modeling

purposes, time is discretized by way of rounds. As Figure 2 shows,
in each round, available vehicles need to report their current loca-

tions to the server in order to participate in the coming services,

RoadAdaptor: An Adaptive Obfuscation Strategy for Vehicle Trajectory Privacy Against Spatial Correlation Aware Attacks SIGSPATIAL’20, November 2020, Seattle, WA, USA

Figure 2: Location obfuscation framework.

which may lead to privacy breaches at the server-side. Like the

prior studies, we assume that the server may suffer from a passive
attack, where attackers can eavesdrop vehicles’ reported locations
breached by the server. As a solution, before reporting the location

to the server, each privacy-aware vehicle will obfuscate its current

location via an obfuscation function. The obfuscation function takes

the vehicle’s current true location as input, and returns the probabil-

ity distribution of obfuscated location, based on which the vehicle

can select a location to report. In parallel to protecting vehicles’

location privacy, the obfuscation function also aims to minimize

the traveling cost for vehicles (i.e. to ensure high QoS).

In fact, the derivation of the obfuscation function is computa-

tionally intensive and beyond the capability of mobile devices at

the vehicle-side. For example, in our prior work [22], calculating

the obfuscation function involves millions of decision variables. As

such, we adopt a remote computing framework, where the server

derives the obfuscation function first in each round, and after then,

each vehicle needs to download the function to obfuscate its own

location [10, 11]. Note that, although the server takes charge of cal-
culating the obfuscation function, it cannot obtain vehicles’ exact
locations since the obfuscated location is chosen randomly by each
vehicle - according to the obfuscated location probability distribution.

On the other hand, even though vehicles’ locations are obfus-

cated at the server-side, attackers may coordinate an inference

attack by reverse-engineering obfuscated locations [8, 10, 13, 17].

In particular, an attacker can carry out background information

attacks, for instance by leveraging traffic flow information (e.g.,

estimated by the GPS records of floating cars [23]). As such, the

attacker can significantly improve its inference accuracy, as shown

in the example in Figure 1. Given the inadequacy of current ap-

proaches in dealing with these attack settings, our objective in

this paper is to design a new location obfuscation strategy to
protect the location privacy of vehicles operating over roads
without compromising QoS. To accomplish this, we take efforts

to address the following two questions:

Q1. How can an attacker use traffic flow information to infer a

target vehicle’s locations (Section 3)?

Q2. How to develop a location obfuscation strategy to protect ve-

hicles’ location privacy even attackers can leverage traffic flow

information for interference (Section 4)?

3 THE THREAT MODEL
The mobility of vehicles is relatively consistent over space and

time, as vehicles are restricted to follow road topology and traffic

regulations. From the perspective of attackers, these environmental

factors provide easy to exploit side-channel information, which can

be leveraged to filter out unlikely routes and hence increase the

risk of vehicles’ location exposure. As a first step, we develop a new

threat model to infer vehicles’ trajectories by leveraging traffic flow

information.

Assumptions and notations. We consider the case that a ve-

hicle reports its locations multiple times during its trip and let

𝑡 = {1, 2, ...,𝑇 } denote the rounds of its reports. Note that the time

duration of each round is possibly different, depending on the time

point the vehicle reports its location. Table 1 lists the main notations

that will be used throughout the paper and their description.

Table 1: Main notations and definitions

Notation Description

S the location set

𝐾 the number of locations in S
𝑇 the number of reported locations in the whole trip

𝑠𝑘 the 𝑘 th location in S
Z𝑡 the obfuscation matrix at round 𝑡

𝑧𝑡
𝑖,𝑗

the probability of selecting location 𝑠 𝑗 as the obfuscated

location given the true location 𝑠𝑖 (or location 𝑠𝑖 in the

selected fake trajectory (Section 4))

𝑋 𝑡 random variable denoting the vehicle’s true location

𝑌 𝑡 random variable denoting the vehicle’s obfuscated location

𝑊 𝑡
random variable denoting vehicle’s location in the

selected fake trajectory

®s𝑜 the observed sequence (the sequence of reported locations)

𝑠𝑜𝑡 the 𝑡 th reported location

P𝑡,𝑡
′

the transition matrix of the vehicle’s location from round 𝑡

to round 𝑡 ′

𝑝
𝑡,𝑡′
𝑖,𝑗

the transition probability that the vehicle moves from 𝑠𝑖 to

𝑠 𝑗 from round 𝑡 to round 𝑡 ′

𝑠𝑟𝑡 the vehicle’s actual location in round 𝑡

®s𝑟 the sequence of real locations

®s𝑓 𝑡𝑚 the𝑚th
fake trajectory in round 𝑡

𝑀 the fake trajectory pool capacity

Like [11], we discretize the road network by a set of road seg-
ments. Precisely, we create a connection when a road intersects,

furcates, joins with other roads, or turns into a different direction.

These connections divide the road network into a set of edges, which
only connect with other edges at their endpoints. Each edge can

be further partitioned into road segments with the same length 𝛿1.

Considering the computational tractability, instead of finding the

true location of the target vehicle, we assume that attackers aim to

identify which segment the vehicle is located. Clearly, with smaller

𝛿 , the vehicle location can be estimated with higher accuracy. For

simplicity, we use the term “location” instead of “road segment”

in what follows. For the target vehicle, we let two random vari-

ables 𝑋 𝑡 and 𝑌 𝑡 denote its actual and reported locations at round

𝑡 , respectively, and let S = {𝑠1, ..., 𝑠𝐾 } denote the location set over
the whole road network. The obfuscation function in each round

𝑡 can be also represented as a stochastic matrix Z𝑡 = {𝑧𝑡
𝑖, 𝑗
}𝐾×𝐾 ,

called obfuscation matrix, where each 𝑧𝑡
𝑖, 𝑗

denotes the probability

1
Due to the variety of road segment, there exists some segments with length smaller

than 𝛿 . But as 𝛿 is small enough, we won’t discuss these segments in the following

part considering the complexity of the formulated problem.

SIGSPATIAL’20, November 2020, Seattle, WA, USA Qiu et al.

P(t)… …

Observable states
(obfuscated location)

Hidden States
(true location)

Y(1) Y(t-1) Y(t)

X(1) X(t-1) X(t)

Figure 3: Hidden Markov Model.

of selecting location 𝑠 𝑗 as the obfuscated location given the true

location 𝑠𝑖 , i.e., 𝑧
𝑡
𝑖, 𝑗

= Pr
(
𝑌 𝑡 = 𝑠 𝑗 |𝑋 𝑡 = 𝑠𝑖

)
.

We let 𝑠𝑟𝑡 and 𝑠𝑜𝑡 denote the vehicle’s true and reported loca-

tions in the round 𝑡 . Then, the sequence of the vehicle’s reported

locations and the corresponding true locations are represented by

®s𝑜 =
{
𝑠𝑜1 , ..., 𝑠𝑜𝑇

}
and ®s𝑟 =

{
𝑠𝑟 1 , ..., 𝑠𝑟𝑇

}
, respectively.

Hidden Markov Model. When the vehicle reports its obfuscated

location to the server, its true location is hidden from the attacker.

Nevertheless, the vehicle’s obfuscated location is related to its true

location by following a probability distribution determined by the

vehicle’s true location and the obfuscation matrix Z𝑡 . On the other

hand, due to the constraints of road network environment and

traffic conditions, the vehicle’s true locations in each pair of adjacent

rounds are spatially correlated. That is, the vehicle’s location in

each round is dependent on its location in the previous rounds.

Accordingly, hidden Markov model (HMM) offers a conveniently
adjustable and straightforward model to characterize the aforemen-

tioned vehicles’ mobility features. As Figure 3 shows, in each round

𝑡 , the vehicle’s true location 𝑋 𝑡 and reported location 𝑌 𝑡 are con-

sidered as its hidden and observable states, respectively, where 𝑋 𝑡

follows a Markov process, i.e., 𝑋 𝑡 only depends on 𝑋 𝑡−1. We let the

transition matrix P𝑡,𝑡
′
=

{
𝑝
𝑡,𝑡 ′

𝑖, 𝑗

}
𝐾×𝐾

(𝑡 < 𝑡 ′) describe the transition

probabilities between the vehicle’s hidden states from round 𝑡 to 𝑡 ′,

where 𝑝
𝑡,𝑡 ′

𝑖, 𝑗
= Pr

(
𝑋 𝑡
′
= 𝑠 𝑗 |𝑋 𝑡 = 𝑠𝑖

)
.

With HMM, given the observed sequence ®s𝑜 =
{
𝑠𝑜1 , ..., 𝑠𝑜𝑇

}
and

the transition matrix P1,2, P2,3, ..., P𝑇−1,𝑇 , the task of the attacker

is to derive the maximum likelihood estimate of the vehicle’s true

locations (trajectory) ®s𝑟 =
{
𝑠𝑟 1 , ..., 𝑠𝑟𝑇

}
.

Transition matrix learning via probing vehicles. There is an
increasing availability of floating vehicle data, which is both historic,

in the form of trajectory datasets [18], and real-time, in the form

of continuous data streams [24]. The dataset usually records the

vehicles’ coordinates along with the timestamps, where time is

discretized into slots (e.g., second [20]). Given the dataset, we can

calculate each the transition probability 𝑝
𝑡−1,𝑡
𝑖, 𝑗

by

𝑝
𝜏−1,𝜏
𝑖, 𝑗

=
of vehicles moving from 𝑠𝑖 to 𝑠 𝑗 from round 𝜏 − 1 to 𝜏

of vehicles in 𝑠𝑖 in round 𝜏 − 1 .

(1)

Note that vehicles mostly don’t report their locations in each slot.

Suppose that the target vehicle 𝑡 th and (𝑡 + 1)th reports are at slots

𝜏𝑡 and 𝜏𝑡+1, respectively. The corresponding transition matrix for

the adjacent reports 𝑠𝑜𝑡 and 𝑠𝑜𝑡+1 , P
𝑡,𝑡+1

is calculated by

P𝑡,𝑡+1 =
𝜏𝑡+1∏
𝜏=𝜏𝑡

P𝜏,𝜏+1 . (2)

Vehicle location tracking. We use the Viterbi algorithm [19] to

infer the vehicle’s real trajectory ®s𝑟 =
{
𝑠𝑟 1 , ..., 𝑠𝑟𝑇

}
. Given the ob-

served location sequence ®s𝑜 =
{
𝑠𝑜1 , ..., 𝑠𝑜𝑇

}
, the Viterbi algorithm

fake trajectory 1

real trajectory

One trajectory is
passed to Layer 1

Obfuscated locations Layer 2

Layer 1

reproduction

selection

trajectory selection

obfuscation function

Fake trajectory manager

obfuscated locations

next
round

fake trajectory

Figure 4: Two layer obfuscation framework.

follows the dynamic programming paradigm to find the most likely

real trajectory ®s𝑟 =
{
𝑠𝑟 1 , ..., 𝑠𝑟𝑇

}
, namely the Viterbi path. We let

𝑣𝑡
𝑗
represent the probability that the vehicle’s 𝑡 th hidden state is

at 𝑠 𝑗 given the first 𝑡 − 1 observations
{
𝑠𝑜1 , ..., 𝑠𝑜𝑡−1

}
, and passing

through the most probable state sequence ®s, i.e.,
𝑣𝑡𝑗 = max

®s∈S𝑡−1
Pr(

{
𝑋 1, ..., 𝑋 𝑡−1

}
= ®s, 𝑋 𝑡 = 𝑠 𝑗︸ ︷︷ ︸

hidden states

|𝑌 1 = 𝑠𝑜1 , ..., 𝑌
𝑡−1 = 𝑠𝑜𝑡−1︸ ︷︷ ︸

observations

) .

(3)

The value of each cell 𝑣𝑡
𝑗
in iteration 𝑡 is computed by recursively

based on the cells calculated in iteration 𝑡 − 1: 𝑣𝑡−1
1

, ..., 𝑣𝑡−1
𝐾

:

𝑣𝑡𝑗 = max

𝑠𝑘 ∈S
𝑣𝑡−1
𝑘

𝑝
𝑡−1,𝑡
𝑘,𝑗

𝑧 𝑗,𝑜𝑡 . (4)

Finally, the Viterbi path (i.e., the estimated real trajectory) can be

retrieved by saving back pointers that remember which state was

used in Equation (4).

The performance of the location inference attack algorithm based

on HMM will be evaluated in Section 5.3, where the algorithm has

been demonstrated to have high accuracy in tracking vehicles’ lo-

cations. In particular, the EIE of the HMM-based inference attack is

87.28% lower than that of the classic Bayesian inference algorithm

[11, 12].

4 COUNTERMEASURE: TWO-LAYER
LOCATION OBFUSCATION DESIGN

In this section, we will introduce our new obfuscation algorithm to

address the vulnerability of vehicles under the inference attack in-

troduced in Section 3. As previously stated, our objective is twofold:

1) to protect vehicles’ location privacy over roads and 2) to limit

quality loss of LBS. The whole process of location obfuscation at

the vehicle-side is composed of two layers (sketched by Figure 4):

Layer 1: The vehicle’s locations are first obfuscated by a “fake”

trajectory that is hard to distinguish from real trajectories. The

generation of the fake trajectory is completed at the vehicle-side

by HMM-based inference attack.

Layer 2: The fake trajectory from Layer 1 will be further obfuscated

by the obfuscation function to introduce more uncertainty to the

vehicle’s reported locations without compromising QoS.

The details of the two-layer obfuscation design are introduced

in Section 4.1–4.2.

4.1 Layer 1: Fake Trajectory Manager
It is important to note that when the vehicle’s location is obfus-

cated independently per round, the sequence of reported locations

RoadAdaptor: An Adaptive Obfuscation Strategy for Vehicle Trajectory Privacy Against Spatial Correlation Aware Attacks SIGSPATIAL’20, November 2020, Seattle, WA, USA

is unlikely to follow the traffic flows. This, unfortunately, helps the

HMM-based inference algorithm (like Viterbi) eliminate the obfus-

cated routes that are impossible to happen in traffic and increases

the accuracy of location estimation. Accordingly, instead of gener-

ating sporadic “fake” locations, our approach first obfuscates each

vehicle’s locations by a “fake” trajectory following real traffic flows,

which is hard to distinguish from real trajectories by HMM-based

inference attack.

To limit quality loss, the fake trajectory is required to be within a

certain range with the vehicle’s real trajectory. Such a requirement,

however, is hard to satisfy by a single fake trajectory when the

vehicle’s mobility is unpredictable. Due to the restriction of traffic

conditions, a fake trajectory may inevitably deviate far away from

the real trajectory over time. Accordingly, as opposed to relying

on a single fake trajectory, we let the vehicle maintain a pool of

candidate fake trajectories dynamically by a fake trajectory manager
(FTM). When reporting, FTM randomly selects one fake trajectory

from the pool and pass it to Layer 2.

Note that the number of possible trajectories following traffic

flows could increase exponentially over time. For the sake of com-

putational tractability, FTM only keeps fake trajectories that can

achieve high privacy and low quality loss.We let F 𝑡 =
{
®s𝑓 𝑡

1

, ..., ®s𝑓 𝑡
𝑀

}
denote the trajectory pool in round 𝑡 , where 𝑀 denotes the pool

capacity and each ®s𝑓 𝑡𝑚 = {𝑠𝑓 1𝑚 , ..., 𝑠𝑓 𝑡𝑚 } (𝑚 = 1, ..., 𝑀). We define a

fitness value for each ®s𝑓 𝑡𝑚 ∈ F
𝑡

𝑤𝑡𝑚 = 𝑤𝑡−1𝑚 + 𝛼𝑑 D
(
𝑠𝑓 𝑡𝑚

, 𝑠𝑟𝑡

)
︸ ︷︷ ︸
privacy level

−𝛼𝑞 Q
(
𝑠𝑓 𝑡𝑚

, 𝑠𝑟𝑡

)
︸ ︷︷ ︸
quality loss

(5)

to evaluate both quality loss and privacy level achieved by ®s𝑡
𝑓𝑚
.

Here, D
(
𝑠𝑓 , 𝑠𝑟

)
and Q

(
𝑠𝑓 , 𝑠𝑟

)
represent the privacy level and the

quality loss generated by the fake location 𝑠𝑓 given the real location

𝑠𝑟 (𝑠𝑓 , 𝑠𝑟 ∈ S), and 𝛼𝑑 and 𝛼𝑞 denote their weights, respectively.

Like [11–13], we define privacy level D
(
𝑠𝑓 , 𝑠𝑟

)
as the Euclidean

distance between 𝑠𝑓 and 𝑠𝑟 .

The definition of quality loss Q
(
𝑠𝑓 , 𝑠𝑟

)
depends on how the

utility of LBS is defined in the application. In this work, we consider

a specific category of LBS, where vehicles have to physically move

to a target location to complete its service. The examples include

location-based recommendation systems (e.g., Yelp) and spatial

crowdsourcing (e.g., Uber). We assume that the prior distribution

of the target location 𝑄 is given, then we can define quality loss as

the expected distortion of traveling distance [11]:

Q
(
𝑠𝑓 , 𝑠𝑟

)
=
∑
𝑞

Pr
(
𝑄 = 𝑠𝑞

) ���C (
𝑠𝑟 , 𝑠𝑞

)
− C

(
𝑠𝑓 , 𝑠𝑞

)��� (6)

where C(𝑠, 𝑠𝑞) denotes the traveling distance from 𝑠 to 𝑠𝑞 over the

map. Here, we enforce a constraint for the quality loss caused by

fake trajectories: Q
(
𝑠𝑓 , 𝑠𝑟

)
≤ Γ̃, (7)

where Γ̃ is a predetermined constant. Fake trajectories that cannot

satisfy Equation (7) won’t be added to the pool.

The maintenance of trajectory pool follows a similar idea of nat-
ural selection: In each round, trajectories within a certain distance

from the current real location will survive and generate a set of

s13

s11
s1

s16

s15

s5

s12

s14

s7

(s13,f,0.2)

(s16,f,0.5)

(s12,f,0.1)

(s1,s11,0.8)

(s5,s15,0.9)

(s7,s14,1.1)

(s2,s1,4.1)

(s4,s1,2.5)

(s3,s1,1.7)

(s6,s5,3.4)

(s8,s7,4.2)

(s9,s7,1.6)

…

(c) Min heap implementation

Round t-1 Round t

s13

s11
s1 s2

s3
s4

s16

s15

s5

s6

s12

s14

s7
s8s9

(a) Production

s13

s11
s1 s2

s16

s15

s5

s6

s12

s14

s8
s7

(b) Selection

(s2,s1,4.1)

(s6,s5,3.4)

(s8,s7,4.2)

Round t

qt-1 qt qt

Filtered
out

Figure 5: Example of fake trajectory maintenance: At round 𝑡 ,
there are three fake trajectories ®s𝑓1 = {𝑠12, 𝑠14, 𝑠7 }, ®s𝑓2 = {𝑠13, 𝑠11, 𝑠1 },
and ®s𝑓3 = {𝑠16, 𝑠15, 𝑠5 }.
(a) Reproduction: ®s𝑓2 has{®s𝑓2 , 𝑠2 } three possible locations to move
to: 𝑠2, 𝑠3, and 𝑠4, so ®s𝑓2 has three offsprings: {®s𝑓2 , 𝑠2 }, {®s𝑓2 , 𝑠3 }, and
{®s𝑓2 , 𝑠4 }. Similarly, ®s𝑓1 has two offsprings: {®s𝑓1 , 𝑠8 } and {®s𝑓1 , 𝑠9 }; ®s𝑓3
has one offspring: {®s𝑓3 , 𝑠6 }.
(b) Selection: Among the six offsprings generated in round 𝑡 , three
offsprings with higher fitness values {®s𝑓1 , 𝑠8 }, {®s𝑓2 , 𝑠2 }, and {®s𝑓3 , 𝑠6 }
are selected for use in the next round.

new trajectories in the next round, while other trajectories will die

off with no more contribution to the pool of further generations.

Specifically, the trajectory pool F 𝑡 is updated from F 𝑡−1 via two
steps: reproduction and selection:

Step 1. Reproduction: Suppose that a vehicle has followed a fake

trajectory ®s𝑓 𝑡−1𝑚
∈ F 𝑡−1 in rounds 1, ..., 𝑡−1. In round 𝑡 , by extending

®s𝑓 𝑡−1𝑚
to a new location 𝑠𝑓 𝑡

𝑚′
that is reachable by the vehicle, we

can obtain a new trajectory: ®s𝑓 𝑡
𝑚′

=

{
®s𝑓 𝑡−1𝑚

, 𝑠𝑓 𝑡
𝑚′

}
. We call ®s𝑓 𝑡

𝑚′
an

offspring of ®s𝑓 𝑡−1𝑚
. Given the transition matrix P𝑡−1,𝑡 , we can find

the set of all possible offsprings of ®s𝑓 𝑡−1𝑚
,

R
(
®s𝑓 𝑡−1𝑚

)
=

{{
®s𝑓 𝑡−1𝑚

, 𝑠 𝑗

} ���𝑠 𝑗 ∈ S with 𝑝
𝑡−1,𝑡
𝑓 𝑡−1𝑚 , 𝑗

> 0

}
, (8)

i.e., ®s𝑓 𝑡−1𝑚
can be possibly extended to a location 𝑠 𝑗 if only if the

transition probability from 𝑠𝑓 𝑡−1𝑚
to 𝑠 𝑗 , 𝑝

𝑡−1,𝑡
𝑓 𝑡−1𝑚 , 𝑗

, is non-zero.

Figure 5(a) gives an example on how fake trajectories’ offsprings

are reproduced from round 𝑡 − 1 to 𝑡 .
Step 2. Selection: Reproduction generates a set of new fake trajecto-

ries R𝑡 = ∪𝑀
𝑚=1
R
(
®s𝑓 𝑡−1𝑚

)
. To filter out the the trajectories with low

privacy level or high quality loss, FTM ranks all the nodes in R𝑡 by
their fitness values and only keeps the𝑀 highest ones. Figure 5(b)

gives an example on how FTM selects the offsprings in round 𝑡 .

Algorithm implementation. As Figure 5(c) shows, the fake tra-
jectory ®s𝑓 𝑡𝑚 in round 𝑡 is stored as a node (or triple):

(
𝑠𝑓 𝑡𝑚

, 𝑠𝑓 𝑡−1𝑚
,𝑤𝑡𝑚

)
,

including ®s𝑓 𝑡𝑚 ’s current location, previous location, and fitness value.

Given 𝑠𝑓 𝜏𝑚 and 𝑠𝑓 𝜏−1𝑚
in rounds 𝜏 = 1, ..., 𝑡 , the whole trajectory ®s𝑓 𝑡𝑚

can be derived via backtracking as each node has the pointer to

SIGSPATIAL’20, November 2020, Seattle, WA, USA Qiu et al.

previous location. When 𝑡 = 1, each 𝑠𝑓 𝑡−1𝑚
is set by 𝜙 , indicating no

previous location exists.

FTM stores the nodes in each round 𝑡 in a min heap, denoted by

q𝑡 , which is efficient in finding the top𝑀 elements from a set [25].

q𝑡 has two features: (a) The first node in q𝑡 , also called the top of q𝑡 ,
has the minimum fitness value. (b) Two types of operations can be

conducted on q𝑡 : push (i.e., to insert a node to q𝑡) and pop (i.e., to

remove the top node from q𝑡). The time complexity of both types of

operations is 𝑂 (log𝑀). Note that pop/push won’t change feature

(a) of q𝑡 , i.e., the top node always has the minimum fitness value.

To find the top 𝑀 nodes, FTM traverses each trajectory in R𝑡 ,
calculates its fitness value, and determines whether to push the

corresponding node onto q𝑡 . The first𝑀 nodes are directly added

to q𝑡 . After then, whether a new node 𝑞𝑡
new

should be added to

q𝑡 depends on whether 𝑞𝑡
new

has a higher fitness value than the

current top node 𝑞𝑡
top

in q𝑡 :
i) If no, 𝑞𝑡

new
won’t be pushed onto q𝑡 , since 𝑞𝑡

new
has a lower fitness

value than any of the𝑀 nodes in q𝑡 .
ii) If yes, 𝑞𝑡

top
will be popped off and 𝑞𝑡

new
will be pushed onto q𝑡 .

Note that 𝑞𝑡
top

cannot be one of the 𝑀 highest nodes, because 1)

its fitness values is lower than 𝑞𝑡
new

’s and also 2) lower than the

fitness values of the other𝑀 − 1 nodes in q𝑡 (based on feature (a)).

Suppose there are 𝑈 locations in R𝑡 satisfying the constraint

in Equation (7). To obtain q𝑡 , FTM takes up to 𝑈𝑀 push/pop op-

erations, which needs totally 𝑂 (𝑈𝑀 log𝑀) operations. As both
𝑀 and 𝑈 are not large in piratical (𝑀 = 100 and 𝑈 ≤ 300 in the

experiment in Section 5), such a computation load is acceptable to

mobile devices (e.g., smartphones). The detailed pseudo code of the

implementation is given in Algorithm 1 in Appendix A.

Fake trajectory determination. After obtaining q𝑡 , FTM ran-

domly picks up a fake trajectory from the pool and pass it to Layer

2 for further obfuscation. Due to the dynamics of the road envi-

ronment and traffic conditions, the vehicle may have to switch

frequently among different fake trajectories when operating over

roads, possibly causing the reported trajectory look “impossible”.

As a solution, we require FTM to select the trajectories that sat-

isfy the constraint Pr
(
𝑊 𝑡 = 𝑠𝑓 𝑡𝑚

|𝑊 𝑡−1 = 𝑠𝑓 𝑡−1
𝑚∗

)
≥ [, to ensure that

reported trajectories are switched smoothly, where the random vari-

able𝑊 𝑡
denotes the location of selected fake trajectory in round 𝑡

and [> 0 is a predetermined threshold.

4.2 Layer 2: Obfuscation Function
The obfuscation function is first generated by the server-side and

then downloaded by each vehicle by the end of each round. In Layer

2, the obfuscation function takes the fake trajectory selected by

Layer 1 as the input and outputs an obfuscated location to report.

Obfuscation function generation. Similar to the ordinary obfus-

cation algorithm introduced in Section 3, the obfuscation func-

tion at each round 𝑡 can be represented as a stochastic matrix
Z𝑡 = {𝑧𝑡

𝑖, 𝑗
}𝐾×𝐾 , where 𝑧𝑡𝑖, 𝑗 denotes the probability of selecting 𝑠 𝑗 as

the obfuscated location given the 𝑡 th location 𝑠𝑖 in the selected fake

trajectory (note that 𝑠𝑖 does not denote the vehicle’s real location,

which is different from the ordinary obfuscation algorithm intro-

duced in Section 3), i.e., 𝑧𝑡
𝑖, 𝑗

= Pr
(
𝑌 𝑡 = 𝑠 𝑗 |𝑊 𝑡 = 𝑠𝑖

)
. For simplic-

ity, we let Z𝑡 =
[
z𝑡⊤
1

. . . z𝑡⊤
𝐾

]⊤
, where z𝑡

𝑘
= [𝑧𝑡

1,𝑙
, 𝑧𝑡

2,𝑙
, ..., 𝑧𝑡

𝐾,𝑙
]⊤

(𝑙 = 1, ..., 𝐾). The obfuscation function is designed to achieve the

following goals:

1) to introduce additional uncertainty to obfuscated location such

that higher privacy level can be achieved (measured by both ex-

pected inference error (EIE) and geo-indistinguishability (GI)),

2) to limit the quality loss by a threshold.

1a) EIE: which is also known as unconditional expected distortion

of estimated location, defined by

∑
𝑠𝑜𝑡 ∈S Ψ (z𝑜𝑡), where

Ψ (z𝑜𝑡) = Pr
(
𝑌 𝑡 = 𝑠𝑜𝑡

) ∑
𝑠𝑓 𝑡 ∈S

Pr
(
𝑊 𝑡 = 𝑠𝑓 𝑡 |𝑌 𝑡 = 𝑠𝑜𝑡

)
D(𝑠

ˆ𝑓 𝑡
, 𝑠𝑓 𝑡),

(9)

and 𝑠
ˆ𝑓 𝑡
is the estimated location derived by the attacker. As the ob-

fuscation function generates obfuscated location independently in

each round, 𝑠
ˆ𝑓 𝑡
can be derived using the Bayesian inference attack

[17], i.e., 𝑠
ˆ𝑓 𝑡
= argmin𝑠𝑓 ∈S

∑
𝑘 Pr

(
𝑊 𝑡 = 𝑠𝑘 |𝑌 𝑡 = 𝑠𝑓

)
D

(
𝑠𝑓 , 𝑠𝑘

)
.

1b) GI: EIE assumes certain types of prior information that the at-

tacker may obtain, but does not consider the posterior information

leaked from obfuscated location. As such, we require the obfusca-

tion function to achieve GI, which limits the posterior information

leakage through a differential privacy based criteria. Formally, Z𝑡

satisfies 𝜖-GI if only if, ∀𝑠 𝑗 , 𝑠𝑘 ∈ S,
Pr

(
𝑊 𝑡 = 𝑠 𝑗 |𝑌 𝑡 = 𝑠𝑙

)
Pr (𝑊 𝑡 = 𝑠𝑘 |𝑌 𝑡 = 𝑠𝑙)

≤ 𝑒𝜖 min

{
𝑐 𝑗,𝑘 ,𝑐𝑘,𝑗

}
×
Pr

(
𝑊 𝑡 = 𝑠 𝑗

)
Pr (𝑊 𝑡 = 𝑠𝑘)

, ∀𝑠𝑙 ∈ S (10)

where 𝜖 is the parameter to quantify how much the vehicle’s actual

location is disclosed according to the reported location, i.e., higher

𝜖 implies more information disclosed and a lower privacy level

achieved. We let the polyhedron ΦGI

𝑙
represent the constraints of

z𝑙 (𝑙 = 1, ..., 𝐾) in Equation (10), i.e., z𝑙 ∈ ΦGI

𝑙
.

2) Quality loss: Given the vehicle’s obfuscated location 𝑠𝑜𝑡 and

actual location 𝑠𝑟𝑡 , we measure the quality loss by the expected

distortion of estimated traveling distance:

E (Q (𝑠𝑜𝑡 , 𝑠𝑟𝑡)) =
∑
𝑟𝑡 ,𝑜𝑡

Pr
(
𝑋 𝑡 = 𝑠𝑟𝑡 , 𝑌

𝑡 = 𝑠𝑜𝑡
)
Q (𝑠𝑜𝑡 , 𝑠𝑟𝑡) . (11)

To limit the quality loss, we require that

E (Q (𝑠𝑜𝑡 , 𝑠𝑟𝑡)) ≤ Γ, (12)

where Γ > 0 is a predefined constant.

Note that the obfuscation matrix Z𝑡 defines the relationship

between the fake trajectory location 𝑠𝑓 𝑡 and the final obfuscated

location 𝑠𝑜𝑡 , but without considering the real location 𝑠𝑟𝑡 . Thus, we

enforce a stronger constraint: ∀(𝑠𝑜𝑡 , 𝑠𝑓 𝑡) ∈ S2,

𝑧𝑡
𝑓 𝑡 ,𝑜𝑡

≤ 0, when Q
(
𝑠𝑜𝑡 , 𝑠𝑓 𝑡

)
> Γ − Γ̃. (13)

where Γ̃ is a threshold hold to limit the quality loss generated by

fake trajectories (defined in Equation 7).

Proposition 4.1. The constraint in Equation (13) is a sufficient
condition for E (Q (𝑠𝑜𝑡 , 𝑠𝑟𝑡)) ≤ Γ.

Proof. The detailed proof can be found in Appendix B. □

For simplicity, we let the polyhedron Φ
QoS

𝑙
represent the con-

straints of z𝑙 (𝑙 = 1, ..., 𝐾) in Equation (13), i.e., z𝑙 ∈ Φ
QoS

𝑙
.

Given the above assumptions and definitions, we now formu-

late the problem of the obfuscation function generation (OFG) as
a mathematical optimization problem, of which the objective is

RoadAdaptor: An Adaptive Obfuscation Strategy for Vehicle Trajectory Privacy Against Spatial Correlation Aware Attacks SIGSPATIAL’20, November 2020, Seattle, WA, USA

to maximize the overall EIE

∑
𝑙 Ψ (z𝑙), while satisfying both GI

constraints (Equation (10)) and QoS constraints (Equation (13)).

max

∑
𝑙

Ψ (z𝑙) (14)

s.t. z𝑙 ∈ ΦGI

𝑙
, z𝑙 ∈ Φ

QoS

𝑙
, z𝑙 ≥ 0, ∀𝑙, (15)∑

𝑙

𝑧𝑘,𝑙 = 1 (prob. unit measure), ∀𝑘. (16)

OFG is a linear programming (LP) problem that can be solved

by standard LP approaches such as the simplex methods [26]. This,

however, introduces challenges with respect to time efficiency and

scalability. The number of decision variables in the obfuscation

matrix Z𝑡 is quadratic to the number of discrete locations in S, e.g.,
thousands of discrete locations will generate millions of decision

variables in OFG, leading to an extremely high computation load.

Nevertheless, to account for realistic applications where traffic con-

ditions change all the time, the derivation of optimal Z𝑡 is supposed
to be time-efficient to handle the highly dynamic inputs.

To tackle this issue, a promising route is to adopt decomposition
techniques based on how decision variables in the problems are

coupled [27]. We let 𝚽𝑙 = 𝚽
GI

𝑙
∩𝚽QoS

𝑙
. The constraints for z in OFG

has a block angular structure, i.e., 1) the constraints 𝚽1, ...,𝚽𝐾 (for

z1, ..., z𝐾 respectively) are all disjoint; 2) only the joint constraints∑
𝑙 𝑧𝑘,𝑙 = 1 (𝑘 = 1, ..., 𝐾) link together the different decision vectors

z1, ..., z𝐾 . Such block angular structure makes OFG well-suited to

Dantzig-Wolfe (DW) decomposition [21], which can efficently solve

the OFG with a cluster. The detailed algorithm for solving OFG via

the DW decomposition is introduced in Appendix C.

5 EXPERIMENTAL VALIDATION
In this section, we evaluate the performance of the HMM-based

inference attack (Section 5.3) and the two layer location obfuscation

algorithm (Section 5.4). We carry out an extensive evaluation of

our methods using a real dataset, which contains the GPS records

of around 28,000 vehicles (Section 5.2).

5.1 Benchmarks
a) Inference algorithm. In Section 5.3, we compare the HMM-

based inference attack with a benchmark, called the Bayesian infer-
ence attack (or optimal inference attack), denoted by Bayes [11, 12].
In the Bayesian inference attack, according to the vehicle’s re-

ported locations, the attacker derives the posterior of the vehicle’s

real location via Bayes’ theorem and then estimates its real loca-

tion by finding the location 𝑠 ∈ S that minimizes the EIE, i.e.,

𝑠 = argmin𝑠𝑟 ∈S
∑
𝑠𝑘 ∈S Pr

(
𝑌 𝑡 = 𝑠𝑘 |𝑋 𝑡 = 𝑠𝑙

)
D(𝑠𝑟 , 𝑠𝑘).

b) Obfuscation algorithms. In Section 5.4, we compare our loca-

tion obfuscation strategy with two representative algorithms, both

of which obfuscate vehicles’ locations independently per round:

(1) Planar Laplacian noise (denoted by Laplace) [8, 10], where the
obfuscation probabilities are calculated by Pr

(
𝑌 𝑡 = 𝑠 𝑗 |𝑋 𝑡 = 𝑠𝑖

)
∝

𝑒
−D(𝑠𝑗 ,𝑠𝑖)

𝐿max , and 𝐿max is the maximum distance between any two

locations in the target region.

(2) LP based obfuscation (denoted by LPO) [11], which follows a lin-

ear programming framework. The objective of [11] is to minimize

Figure 6: Heat map of the estimated transition probabilities
between the road segments in Shenzhen.

the traveling distance estimation error of a single vehicle with the

𝜖-GI constraints satisfied. In [11], the network-constrained mobility

features of vehicles are considered.

We mainly measure the following two metrics:

(i) Privacy level, measured by EIE, which is calculated by∑
𝑠𝑜𝑡 ∈S Pr

(
𝑌 𝑡 = 𝑠𝑜𝑡

) ∑
𝑠𝑟𝑡 ∈S Pr

(
𝑋 𝑡 = 𝑠𝑟𝑡 |𝑌 𝑡 = 𝑠𝑜𝑡

)
D(𝑠, 𝑠𝑟𝑡), where

𝑠 is the estimated location by the inference attack.

(ii) Quality loss, measured by the expected distortion of estimated

traveling distance by the server (defined in Equation (11)). Here, we

assume the task are uniformly distributed over the location set S.
5.2 Dataset
The dataset used for experiment includes the movement records of

various vehicles. In the simulation, we use the data recorded from

Jan 1, 2015 to Dec 31, 2015, including:

(1) Taxicab Dataset. This dataset records the status (e.g., timestamp,

GPS position, velocity, occupancy) of 15,610 taxicabs. The daily size

of the uploaded data is around 2 GB.

(2) Dada Car Dataset. This dataset is provided by the Dada Car cor-

poration (a customized transit service similar to UberPool), which

records the status (e.g., timestamp, position, velocity) of 12,386

customized transit service vehicles.

(3) Road Map. The road map of Shenzhen is obtained from Open-

StreetMap [28]. According to the municipal information of Shen-

zhen [20], we use a bounding boxwith coordinate (𝑙𝑎𝑡 = 22.4450, 𝑙𝑜𝑛 =

113.7130) as the south-west corner, and coordinate (𝑙𝑎𝑡 = 22.8844, 𝑙𝑜𝑛 =

114.5270) as the north-east corner, which covers an area of around

2,926km
2
, to crop the road map data.

We utilized a 117 TB Hadoop Distributed File System (HDFS)

[29] on a cluster consisting of 51 nodes to efficiently manage these

datasets. Each node is equipped with 28 cores and 64 GB RAM.

All data processing and analysis is accomplished with Apache

Spark [30], which is a fast in-memory cluster computing system,

deployed over the Hadoop cluster.

5.3 Trajectory Inference Algorithms
We first test the accuracy of the HMM-based trajectory inference

algorithm (denoted by HMM) introduced in the threat model (Sec-

tion 3). In what follows, we set the algorithm parameters 𝜖 = 100,

Γ = 1𝑘𝑚, Γ̃ = 0.5𝑘𝑚, [= 0.1, and𝑀 = 100 by default.

Using the vehicles’ historical traffic records in Shenzhen [20], we

can train the HMM transition matrices over time by Equation (1).

Figure 6 shows a heat map of the transition probabilities between

the road segments in Shenzhen.

We pick up 42 taxicab traces from the dataset and consider them

as the trajectories of the target vehicles. Figure 7(a)(b) compare the

SIGSPATIAL’20, November 2020, Seattle, WA, USA Qiu et al.

10 20 30 40

Trace index

0

0.5

1.0

1.5

2.0

EI
E

(k
m

)

HMM
Bayes

HMM Bayes

Algorithm

(a) Obfuscated by Laplace

10 20 30

Trace index

0

0.5

1.0

1.5

2.0

E
IE

 (k
m

)

HMM
Bayes

HMM Bayes

Algorithm

(b) Obfuscated by LPO

Figure 7: Comparison of EIE between HMM and Bayes.

0 20 40 60 80 100

Average time interval (sec)

0

0.5

1.0

1.5

2.0

2.5

E
IE

 (k
m

)

HMM: Corr = 0.3985
Bayes: Corr = 0.0521

(a) Obfuscated by Laplace

0 20 40 60 80 100

Average time interval (sec)

0

0.5

1.0

1.5

2.0

2.5

E
IE

 (k
m

)

HMM: Corr = 0.3659
Bayes: Corr = -0.1005

(b) Obfuscated by LPO

Figure 8: Correlation between EIE and report time interval.

EIE of HMM and Bayes when the vehicles’ locations are obfuscated

by Laplace and LPO, respectively. From both figures, we can find

that HMM, as a spatial correlation aware inference attack, has sig-

nificant higher inference accuracy than Bayes, e.g., its EIE is 87.97%

and 86.58% lower than that of Bayes when Laplace and LPO are

applied for location obfuscation. The figures also demonstrate that

the current location obfuscation approaches, like Laplace and LPO,

are insufficient to protect vehicles’ location privacy from spatial

correlation aware attacks such as HMM.

We also note that the location report frequency from vehicles

varies across different traces. Hence, it is interesting to check how

the report frequency impacts the EIE of HMM and Bayes. In Figure

8(a)(b), we depict the correlation between EIE and the average re-

port interval when the vehicles’ locations are obfuscated by Laplace

and LPO. We find that in both figures: (1) no significant correla-

tion can be found between the average report intervals and Bayes’

EIE, while (2) HMM’s EIE is positively correlated with the report

intervals. For (1), it is because that Bayes infers vehicles’ locations

in each round independently, without considering any correlation

between adjacent reports. In contrast, the accuracy of HMM highly

depends on the spatial correlation information from vehicles’ adja-

cent reports. As such, for (2), when report intervals are larger, the

adjacent reports from vehicles are less correlated, which reduces

the accuracy of HMM.

Recall that both Laplace and LPO aim to satisfy 𝜖-GI, of which

the privacy level is quantified by the parameter 𝜖 (Equation (10)),

i.e., lower 𝜖 indicates higher privacy level. Next, we measure how 𝜖

impacts the EIE of both HMM and Bayes. The results are depicted

in Figure 9, where 𝜖 is changed from 50 to 100, and the target vehi-

cles’ locations are obfuscated by Laplace and LPO in Figure 9(a)(b),

respectively. Not surprisingly, EIE decreases with the increase of

𝜖 in both figures, since higher 𝜖 enforces more deviation from ob-

fuscated locations to real locations, which reduces the accuracy

of HMM and Bayes. However, the impact of 𝜖 on HMM is not as

significant as it is on Bayes, i.e. when an obfuscated location has

a higher deviation from the real location, it has less correlation

0

0.05

0.1

E
IE

 (
km

)

50 60 70 80 90 100

0.2

0.3

0.4

HMM

Bayes

(a) Obfuscated by Laplace

0

0.05

0.1

E
IE

 (
km

)

50 60 70 80 90 100

0.2

0.3

0.4

HMM

Bayes

(b) Obfuscated by LPO

Figure 9: EIE of HMM and Bayes with different 𝜖.

10 20 30 40

Trace Index

0

0.5

1.0

1.5

2.0

EI
E

(k
m

)

2Layer
Laplace
LPO

2Layer Laplace LP

Algorithms

(a) EIE

10 20 30 40

Trace index

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Q
oS

 lo
ss

 (k
m

)

2Layer
Laplace
LPO

2Layer Laplace LP

Algorithms

(b) Quality loss

Figure 10: Comparison between obfuscation algorithms.

with the last reported location, and hence it is more likely to be

eliminated by HMM. This helps increase the accuracy of HMM.

5.4 Location Obfuscation Algorithms
We now test the performance of the two-layer location obfuscation

algorithm (denoted by 2Layer) in terms of both privacy and quality

loss, with the comparison of the two benchmarks Laplace and LPO.
Here, we use HMM as the inference attack algorithm to estimate

vehicles’ locations.

Figure 11(a) compares the EIE of 2Layer, Laplace, and LPO in

different traces (without loss of generality, we sort the vehicle traces

according to the EIE achieved by 2Layer). The figure demonstrates

that 2Layer outperforms both Laplace and LPO in term of privacy

level: On average, the EIE of 2Layer is 547.17% and 499.89% higher

than that of Laplace and LPO, respectively. As analyzed in Section

4, the higher privacy level achieved by 2Layer is due to its two

layer obfuscation framework, particularly the obfuscation by a fake

trajectory in Layer 1 that is hard to distinguish from real trajectories

by HMM. Moreover, we depict the box plot of the three algorithms’

EIE in Figure 11(a) to show the variability of their EIE. According to

the box plot, we can see that 2Layer has higher EIE variance than

Bayes, as 2Layer has the second layer obfuscation that introduces

additional uncertainty to the vehicles’ reported locations.

Figure 11(b) compares the quality loss of the three algorithms

in different traces (without loss of generality, we sort the vehicles

based on the quality loss achieved by 2Layer). The figure shows that

Laplace > 2Layer ≈ LPO in terms of quality loss. On average, the

quality loss caused by 2Layer is 26.48% lower than that of Laplace,

and 8.25% higher than that of LPO. Laplace has higher quality loss

than both HMM and LPO as it simply considers users’ mobility

on a 2D plane, in which the sensitivity of quality loss to location

obfuscation is different than in a road network. In particular, due

to the restriction of the road network, a small location deviation

on the 2D plane may lead to a significant different estimated trav-

eling distance over roads (e.g., think about when a vehicle has to

take a detour to reach a nearby destination). Therefore, obfuscated

RoadAdaptor: An Adaptive Obfuscation Strategy for Vehicle Trajectory Privacy Against Spatial Correlation Aware Attacks SIGSPATIAL’20, November 2020, Seattle, WA, USA

25 50 75 100 25 50
0

0.05

0.1

0.15

E
IE

 (
km

)

(a) Varying 𝜖

0.2 0.4 0.6 0.8 1.0

 (km)

0

0.1

0.2

0.3

0.4

0.5

E
IE

 (k
m

)

(b) Varying Γ

Figure 11: EIE of HMM given different 𝜖 and Γ.

25 50 75 100 25 50
0

0.02

0.04

0.06

0.08

0.1

Q
oS

 lo
ss

 (
km

)

(a) Varying 𝜖

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

 (km)

0.1

0.15

0.2

0.25

Q
oS

 lo
ss

 (k
m

)

(b) Varying Γ

Figure 12: Quality loss of HMM given different 𝜖 and Γ.

locations generated by Laplace is more likely to generate high trav-

eling cost. Although LPO has a slightly lower quality loss than

2Layer, it minimizes the quality loss at the expense of privacy, as

demonstrated in Figure 11(a).

Next, we evaluate the impact of the two parameters 𝜖 and Γ
on HMM’s accuracy (recall that, in Equation (12), Γ is a threshold

limiting the quality loss). Figure 11(a)(b) show the change of HMM’s

EIE with 𝜖 increased from 50 to 100, and Γ increased from 0.1km to

1.0km, respectively. From the two figures, we observe that: HMM’s

EIE (1) decreases with an increase of 𝜖 , and (2) increases with

an increase of Γ. For (1), it is because higher 𝜖 requires smaller

distortion between vehicles’ obfuscated and real locations, making

vehicles more susceptible to the inference attack. For (2), since

higher Γ allows larger deviation from real locations to obfuscated

locations, EIE can be achieved at a higher level.

Finally, we test how the two parameters 𝜖 and Γ impact the qual-

ity loss of HMM. Figure 12(a)(b) show the change of HMM’s EIE

given different 𝜖 and Γ. The figures imply that the quality loss of

HMM (1) decreases with the increase of 𝜖 and (2) increases with

the increase of Γ. By comparing Figure 12(a)(b) with Figure 11(a)(b),

we can also find that lower 𝜖 (higher privacy level) and higher Γ
allow more space to select obfuscated locations for vehicles, but on

the other hand, are likely to introduce more errors to service (e.g.,

task assignment/recommendation), leading to a higher quality loss.

In fact, there is a trade-off between privacy and QoS. Therefore,

in real applications, it is of great importance to balance these two

metrics based on users’ preferences.

6 RELATEDWORK
In this section, we summarize the existing works that are most

relevant to ours:

Sporadic location privacy model. In fact, the discussion of loca-

tion privacy criteria can date back to more than ten years ago, when

Gruteser and Grunwald [31] first introduced the notion of location
𝑘-anonymity on the basis of Sweeney’s well-known concept of 𝑘-
anonymity for data privacy [32]. Location-based 𝑘-anonymity was

originally used to hide a user’s identity in a location-based service

[33]. This notion has been extended to obfuscate users’ location by

means of 𝑙-diversity, i.e., a user’s location cannot be distinguished

with other 𝑙 − 1 dummy locations [12, 34], which creates a cloaking

area that includes 𝑙 locations sharing some property of interest.

However, 𝑙-diversity is hard to achieve in many real applications

as it assumes dummy locations are equally likely to be the real

location from the attacker’s point of view [8, 12].

In recent years, two practical privacy notions have been pro-

posed based on statistical quantification of attack resilience, e.g.,

expected inference error (EIE) [17, 35], and geo-indistinguishability
(GI) [8], i.e., if two location points are geographically close, their

obfuscated locations will be generated with a similar probability

distribution. On the basis of EIE and GI, a large body of location

obfuscation strategies have been proposed to achieve either of these

two privacy criteria (e.g., [8–10, 17, 35–37]) or their combination

[12]. As location obfuscation based methods inevitably introduce

errors to users’ reported locations, which may lead to quality loss in

LBS. Therefore, a key issue has been discussed in those works is how

to trade-off QoS and privacy. In particular, many existing works

follow a global optimization framework: given the privacy (mea-

sured by EIE/GI) or QoS constraints, a math optimization model is

formulated to maximize QoS or privacy respectively [6, 10, 13, 17].

Yet, both privacy notions have their own limitations: EIE based

approaches assume certain types of prior information that the

attacker may obtain, but require no restriction on the posterior

information gain from the exposure of obfuscated locations. GI-

based approaches limit the posterior information leakage through

a differential privacy (DP) based criteria, but they are susceptible to

inference attacks based on attackers’ prior knowledge [12]. As such,

recent works (e.g., [12]) have proposed to strategically combine

the two privacy notions to double shield users’ location privacy.

More importantly, both EIE and GI are based on isolated obfuscated
location with no consideration of spatial correlation between reported
(obfuscated) locations from mobile users. Such sporadic location pri-

vacy criteria are insufficient for applications in real-world settings,

leaving severe concerns on the actual robustness of these methods.

Spatiotemporal location privacy model. A variety of privacy

protection location/trajectory inference algorithms have been pro-

posed to date. These algorithms focus on spatiotemporal correlation

of users’ reported locations, either from a single user at different

time points (e.g., trajectory) [38–43] or from multiple users [44].

These efforts are based on the assumption that users’ mobility fol-

lows a Markov process [38, 42], i.e., users’ current locations depend

on the locations attained in the previous round. For instance, Liao

et. al [38] applied a hierarchical Markov model to learn and infer a

mobile user’s trajectory based on the places and temporal patterns

the user visited. Given uncertain locations of moving objects, Em-

rich et. al [42] proposed a modified matrix computation method to

efficiently compute the probability of a user appearing in certain

region during certain time period. In addition to the above, some

inference algorithms focus on other statistical features of users’

mobility (e.g., visiting frequency at certain interests of points [45]

or users’ location spatial similarity [46]).

In recent years, research works closer to ours have proposed

privacy criteria and solutions that account for statistical features of

users’ location data [40, 44, 47, 48]. For example, under the assump-

tion that attackers use Markov models to describe users’ mobility,

SIGSPATIAL’20, November 2020, Seattle, WA, USA Qiu et al.

Cao et al. [40] defined a criterion to quantify the privacy level that

existing methods can achieve. Furthermore, Cao et al. [44] extended

the notion of DP to a new criteria to protect spatiotemporal event
privacy and provided a framework to calculate the privacy loss of

a given location privacy protection mechanism. By counting for

the temporal correlations in location data, Xiao et al. [48] proposed

a new definition, called 𝛿-location set based DP, and presented a

planar isotropic mechanism for location obfuscation.While elegant,
all these formulations are designed for general moving objects without
considering vehicles’ mobility features over roads, i.e., road network
topology, traffic regulations, and many other road network environ-
ments. Therefore, they fall short in regard to their applicability in
vehicles’ location privacy protection.

7 CONCLUSIONS
In this paper, by leveraging vehicle traffic information, we have

developed a new spatial correlation aware inference attack that can

accurately recover vehicles’ trajectories from their obfuscated loca-

tions. As a countermeasure, we have proposed a two-layer location

obfuscation algorithm to protect the location privacy of vehicles

under the new threat model. The trace-driven simulation results

have shown the current obfuscation algorithms are insufficient

to address the vulnerability of vehicles when the new inference

algorithm is applied. Furthermore, the experimental results have

demonstrated the effectiveness of our approach over the state of

the arts in terms of both privacy and QoS.

We can see several promising directions to continue this research.

First, our current work accounts only for a single vehicle, with-

out considering the spatial correlations between multiple vehicles.

Also, this work can be extended to general LBS applications, where

service utilities can be defined in different ways. Moreover, we will

consider different threat models where the information disclosed to

attackers is in different formats (e.g., smartphones’ accelerometer

and gyroscope).

REFERENCES
[1] M. Amin-Naseri and et al. Evaluating the reliability, coverage, and added value of

crowdsourced traffic incident reports from waze. Transportation Research Record,
2672(43):34–43, 2018.

[2] MediaQ. https://imsc.usc.edu/platforms/mediaq/, 2019. Accessed: 2019-07-22.

[3] Y. Tong, L. Chen, and C. Shahabi. Spatial crowdsourcing: Challenges, techniques,

and applications. VLDB Endow., 10(12):1988–1991, August 2017.
[4] H. To, G. Ghinita, L. Fan, and C. Shahabi. Differentially private location protection

for worker datasets in spatial crowdsourcing. IEEE TMC, pages 934–949, 2017.
[5] B. Liu, L. Chen, X. Zhu, Y. Zhang, C. Zhang, and W. Qiu. Protecting location

privacy in spatial crowdsourcing using encrypted data. In Proc. of EDBT, 2017.
[6] K. Fawaz, H. Feng, and K. G. Shin. Anatomization and protection of mobile apps’

location privacy threats. In Proc. of USENIX Association, pages 753–768, 2015.
[7] G. Ghinita and et al. Private queries in location based services: Anonymizers are

not necessary. In Proc. of ACM SIGMOD, pages 121–132, 2008.
[8] M. E. Andrés, N. E. Bordenabe, K. Chatzikokolakis, and C. Palamidessi. Geo-

indistinguishability: Differential privacy for location-based systems. In Proc. of
ACM CCS, pages 901–914, 2013.

[9] N. E. Bordenabe, K. Chatzikokolakis, and C. Palamidessi. Optimal geo-

indistinguishable mechanisms for location privacy. In Proc. of ACM CCS, pages
251–262, 2014.

[10] L. Wang, D. Yang, X. Han, T. Wang, D. Zhang, and X. Ma. Location privacy-

preserving task allocation for mobile crowdsensing with differential geo-

obfuscation. In Proc. of ACM WWW, pages 627–636, 2017.

[11] C. Qiu and A. C. Squicciarini. Location privacy protection in vehicle-based

spatial crowdsourcing via geo-indistinguishability. In Proc. of IEEE ICDCS, pages
1061–1071, 2019.

[12] L. Yu, L. Liu, and C. Pu. Dynamic differential location privacy with personalized

error bounds. In Proc. of IEEE NDSS, 2017.

[13] K. Fawaz and K. G. Shin. Location privacy protection for smartphone users. In

Proc. of ACM CCS, pages 239–250, New York, NY, USA, 2014. ACM.

[14] B. Gedik and L. Liu. Location privacy in mobile systems: A personalized

anonymization model. In Proc. of IEEE ICDCS, pages 620–629, June 2005.
[15] H. To, G. Ghinita, and C. Shahabi. A framework for protecting worker location

privacy in spatial crowdsourcing. VLDB Endow., 7(10):919–930, June 2014.
[16] H. To, C. Shahabi, and L. Xiong. Privacy-preserving online task assignment in

spatial crowdsourcing with untrusted server. In Proc. of IEEE ICDE, 2018.
[17] R. Shokri, G. Theodorakopoulos, C. Troncoso, J. Hubaux, and J. L. Boudec. Pro-

tecting location privacy: Optimal strategy against localization attacks. In Proc. of
ACM CCS, pages 617–627, 2012.

[18] L. Yan, H. Shen, J. Zhao, C. Xu, F. Luo, and C. Qiu. Catcharger: Deploying

wireless charging lanes in a metropolitan road network through categorization

and clustering of vehicle traffic. In Proc. of IEEE INFOCOM, pages 1–9, 2017.

[19] G. D. Forney. The viterbi algorithm. Proc. of the IEEE, 61(3):268–278, 1973.
[20] Yanhua Li, Jun Luo, Chi-Yin Chow, Kam-Lam Chan, Ye Ding, and Fan Zhang.

Growing the charging station network for electric vehicles with trajectory data

analytics. In Proc. of ICDE, 2015.
[21] G. B. Dantzig and P. Wolfe. Decomposition principle for linear programs. Opera-

tions Research, (8):101–111, 1960.
[22] C. Qiu, A. C. Squicciarini, and S. M. Rajtmajer. Rating mechanisms for sustain-

ability of crowd-sourcing platforms. In Proc. of ACM International Conference on
Information and KnowledgeManagement (CIKM), 2019.

[23] Wang T. and Hu J. Applying floating car data in traffic monitoring. In 2014 IEEE
ICCSSE, pages 96–99, 2014.

[24] Y. Zhu, Z. Li, H. Zhu, M. Li, and Q. Zhang. A compressive sensing approach to

urban traffic estimation with probe vehicles. IEEE TMC, 12:2289–2302, 11 2013.
[25] Harsh Bhasin. Algorithms: Design and Analysis. Oxford Univ Press, 2015.

[26] Frederick S. Hillier. Linear and Nonlinear Programming. Stanford University,

2008.

[27] D. P. Palomar and Mung Chiang. A tutorial on decomposition methods for

network utility maximization. IEEE Journal on Selected Areas in Communications,
24(8):1439–1451, Aug 2006.

[28] openstreetmap. https://www.openstreetmap.org/, 2020. Accessed: 2020-04-07.

[29] Apache Hadoop 2.7.3. hadoop.apache.org, 2020. Accessed in February, 2020.

[30] Apache Spark 1.5.2. spark.apache.org, 2020. Accessed in February, 2020.

[31] M. Gruteser and D. Grunwald. Anonymous usage of location-based services

through spatial and temporal cloaking. In Proc. of ACM MobiSys, 2003.
[32] L. Sweeney. Achieving k-anonymity privacy protection using generalization and

suppression. Int. J. Uncertain. Fuzziness Knowl.-Based Syst., 10(5):571–588, 2002.
[33] L. Zheng, H. Yue, Z. Li, X. Pan, M. Wu, and F. Yang. k-anonymity location privacy

algorithm based on clustering. IEEE Access, 2018.
[34] T. Wang and L. Liu. Privacy-aware mobile services over road networks. VLDB

Endow., 2(1):1042–1053, August 2009.
[35] R. Shokri, G. Theodorakopoulos, J. Y. Le Boudec, and J. P. Hubaux. Quantifying

location privacy. In 2011 IEEE SP, pages 247–262, 2011.
[36] C. Ardagna, M. Cremonini, S. Vimercati, and P. Samarati. An obfuscation-based

approach for protecting location privacy. IEEE TDSC, 8:13 – 27, 03 2011.

[37] R. Shokri, G. Theodorakopoulos, J. Le Boudec, and J. Hubaux. Quantifying

location privacy. In Proc. of 2011 IEEE SP, pages 247–262, May 2011.

[38] L. Liao, D. J. Patterson, D. Fox, andH. Kautz. Learning and inferring transportation

routines. Artificial Intelligence, 171(5):311 – 331, 2007.

[39] F. Xu, Z. Tu, Y. Li, P. Zhang, X. Fu, and D. Jin. Trajectory recovery from ash: User

privacy is not preserved in aggregated mobility data. In Proc. of ACM WWW,

page 1241–1250, 2017.

[40] Y. Cao, M. Yoshikawa, Y. Xiao, and L. Xiong. Quantifying differential privacy

under temporal correlations. In Proc. of IEEE ICDE, pages 821–832, 2017.
[41] Z. Li, B. Ding, J. Han, and R. Kays. Swarm: Mining relaxed temporal moving

object clusters. Proc. VLDB Endow., 3(1–2):723–734, September 2010.

[42] T. Emrich, H. Kriegel, N. Mamoulis, M. Renz, and A. Zufle. Querying uncertain

spatio-temporal data. In Proc. of IEEE ICDE, pages 354–365, 2012.
[43] Q. Li, Y. Zheng, X. Xie, Y. Chen, W. Liu, and W. Ma. Mining user similarity based

on location history. In Proc. of SIGSPATIAL, 2008.
[44] Y. Cao, Y. Xiao, L. Xiong, and L. Bai. Priste: From location privacy to spatiotem-

poral event privacy. In Proc. of IEEE ICDE, pages 1606–1609, 2019.
[45] A. Korkmaz, F. Elik, F. Aydin, M. Bulut, S. Kul, and A. Sayar. Modeling trajectory

data as a directed graph. MIKE, pages 168–176, 2018.
[46] W. Li, H. Chen, W. Ku, and X. Qin. Scalable spatiotemporal crowdsourcing for

smart cities based on particle filtering. In Proc. of ACM SIGSPATIAL, 2017.
[47] G. Ghinita, M. L. Damiani, C. Silvestri, and E. Bertino. Preventing velocity-based

linkage attacks in location-aware applications. In Proc. of ACM SIGSPATIAL, page
246–255, 2009.

[48] Y. Xiao and L. Xiong. Protecting locations with differential privacy under tempo-

ral correlations. In Proc. of CCS, page 1298–1309, 2015.
[49] J. Puchinger, P. Stuckey, M. Wallace, and S. Brand. Dantzig-wolfe decomposition

and branch-and-price solving in g12. Constraints, 16(1):77–99, Jan 2011.

[50] N. Maculan, M. Passini, B. Moura, and I. Loiseau. Column-generation in integer

linear programming. RAIRO, 37(2):67–83, 2003.

https://imsc.usc.edu/platforms/mediaq/
https://www.openstreetmap.org/
hadoop.apache.org
spark.apache.org

RoadAdaptor: An Adaptive Obfuscation Strategy for Vehicle Trajectory Privacy Against Spatial Correlation Aware Attacks SIGSPATIAL’20, November 2020, Seattle, WA, USA

APPENDIX
A. The pseudo code of trajectory maintenance
Algorithm 1 provides the pseudo-code of the trajectorymaintenance

algorithm by FTM in each round 𝑡 :

Algorithm 1: Fake trajectory manager.

Input :𝑡 , q1, ..., q𝑡−1, 𝑠𝑡𝑟
Output :q𝑡

1 q𝑡 is initialized by empty;

2 if 𝑡 equals 1 then
3 // Initialization in the first round

4 Randomly pick up𝑀 locations around the current real

location 𝑠𝑡𝑟 : 𝑠𝑓 𝑡
1

, ..., 𝑠𝑓 𝑡
𝑀
;

5 for each 𝑠𝑓 𝑡𝑚 (𝑚 = 1, ..., 𝑀) do
6 Calculate 𝑠𝑓 𝑡𝑚

’s fitness value𝑤𝑡𝑚 using Equation (5);

7 q𝑡 .push(
(
𝑠𝑓 𝑡𝑚

, 𝜙,𝑤𝑡𝑚

)
);

8 else
9 Initialize the location set R𝑡 by an empty set;

10 // S1: Production

11 for each
(
𝑠𝑓 𝑡−1𝑚

, 𝑠𝑓 𝑡−1
𝑚′
,𝑤𝑡−1𝑚

)
in q𝑡−1 do

12 for each 𝑠 𝑗 ∈ S with 𝑝𝑡−1,𝑡
𝑓 𝑡−1𝑚 , 𝑗

> 0 do

13 Add 𝑠 𝑗 to R𝑡 ;

14 // S2: Selection

15 for ∀𝑠 𝑗 ∈ R𝑡 do
16 Calculate 𝑠 𝑗 ’s fitness value𝑤

𝑡
𝑗
using Equation (5);

17 if
��q𝑡 �� < 𝑀 then

18 // q𝑡 is not full

19 q𝑡 .push(
(
𝑠𝑓 𝑡−1
𝑗′
, 𝑠𝑓𝑗 ,𝑤

𝑡
𝑗

)
); // 𝑠𝑓 𝑡−1

𝑗′
is 𝑠 𝑗’s

previous location

20 else
21 if q𝑡 .top() has higher fitness value than𝑤𝑡

𝑗
then

22 q𝑡 .pop();

23 q𝑡 .push(
(
𝑠𝑓 𝑡−1
𝑗′
, 𝑠𝑓𝑗 ,𝑤

𝑡
𝑗

)
);

24 return q𝑡 ;

At the beginning of each round 𝑡 , the min heap q𝑡 is initialized
by empty (line 1). If it is the first round (line 2–7), FTM randomly

picks up𝑀 locations around the current true location: 𝑠𝑓 𝑡
1

, ..., 𝑠𝑓 𝑡
𝑀

(line 4), calculates their fitness values𝑤𝑡
1
, ...,𝑤𝑡

𝑀
(line 6), and pushes

the corresponding nodes

(
𝑠𝑓 𝑡𝑚

, 𝜙,𝑤𝑡𝑚

)
(𝑚 = 1, ..., 𝑀) sequentially

onto q𝑡 (line 7).
After the first round, FTM needs to carry out the following two

steps:

S1: Production (line 9–13): FTM initialize an empty location set

R𝑡 (line 9). Given the locations of fake trajectories in the last

round, which can be found in q𝑡−1 (line 11), FTM finds a set

of locations that are reachable (line 12) and add them in R𝑡
(line 13);

S2: Selection (line 14–23): For each location 𝑠 𝑗 ∈ R𝑡 , FTM cal-

culates its fitness value 𝑤𝑡
𝑗
(line 16). The first 𝑀 nodes are

pushed directly onto q𝑡 (line 19). Once q𝑡 reaches its capac-
ity, i.e., |q𝑡 | = 𝑀 , FTM first checks whether the top node

in q𝑡 has higher fitness value than𝑤𝑡
𝑗
(line 21): If yes, then

FTM pops the top node off q𝑡 (line 22) and pushes the new

node

(
𝑠𝑓 𝑡−1
𝑗′
, 𝑠𝑓𝑗 ,𝑤

𝑡
𝑗

)
onto q𝑡 (line 23).

B. Proof of Proposition 4.1
Proof. According to the triangle inequality,

Q (𝑠𝑜𝑡 , 𝑠𝑟𝑡) =
∑
𝑞

Pr
(
𝑄 = 𝑠𝑞

) ��C (
𝑠𝑟𝑡 , 𝑠𝑞

)
− C

(
𝑠𝑜𝑡 , 𝑠𝑞

) ��
≤

∑
𝑞

Pr
(
𝑄 = 𝑠𝑞

) ���C (
𝑠𝑓 𝑡 , 𝑠𝑞

)
− C

(
𝑠𝑜𝑡 , 𝑠𝑞

) ���
+

∑
𝑞

Pr
(
𝑄 = 𝑠𝑞

) ���C (
𝑠𝑟𝑡 , 𝑠𝑞

)
− C

(
𝑠𝑓 𝑡 , 𝑠𝑞

)���︸ ︷︷ ︸
≤ Γ̃ according to Equation (7)

≤ Q
(
𝑠𝑜𝑡 , 𝑠𝑓 𝑡

)
+ Γ̃.

Accordingly, when the constraint in Equation (13) is satisfied (i.e.,

𝑧𝑡
𝑓 𝑡 ,𝑜𝑡

≤ 0, when Q
(
𝑠𝑜𝑡 , 𝑠𝑓 𝑡

)
> Γ − Γ̃), we have

E (Q (𝑠𝑜𝑡 , 𝑠𝑟𝑡)) =
∑
𝑟𝑡 ,𝑜𝑡

Pr
(
𝑋 𝑡 = 𝑠𝑟𝑡 , 𝑌

𝑡 = 𝑠𝑜𝑡
)
Q (𝑠𝑜𝑡 , 𝑠𝑟𝑡) (17)

≤ Γ̃ +
∑

𝑟𝑡 ,𝑜𝑡 with Q(𝑠𝑜𝑡 ,𝑠𝑟𝑡)≤Γ−Γ̃
Pr

(
𝑋 𝑡 = 𝑠𝑟𝑡 , 𝑌

𝑡 = 𝑠𝑜𝑡
)
Q

(
𝑠𝑜𝑡 , 𝑠𝑓 𝑡

)
≤ Γ̃ + Γ − Γ̃ = Γ, (18)

indicating that the constraint in Equation (12) is also satisfied. The

proof is completed. □

C. The DW decomposition
DW formulation. We let Z𝑙 =

{
ẑ1
𝑙
, ..., ẑ𝑇𝑙

𝑙

}
denote the set of ex-

treme points of 𝚽𝑙 (recall 𝚽𝑙 is the polyhedron that constraints the

decistion vector z𝑙). According to Minkowski-Weyl’s Theorem [26],

z𝑙 ∈ 𝚽𝑙 can be represented as a convex combination of ẑ1
𝑙
, ..., ẑ𝐿𝑙

𝑙
:

z𝑙 =
𝑇𝑙∑
𝑡=1

_𝑙,𝑡 ẑ
𝑡
𝑙
, (19)

where

∑𝑇𝑙
𝑡=1

_𝑙,𝑡 = 1, _𝑙,𝑡 ≥ 0. Based on Equation (19), the original

OFG can be rewritten as:

max

∑
𝑙

∑
𝑡

_𝑙,𝑡𝑧
𝑡
𝐾+1,𝑙 (20)

s.t.

∑
𝑙

∑
𝑡

_𝑙,𝑡𝑧
𝑡
𝑘,𝑙

= 1, ∀𝑘, (21)

𝑇𝑙∑
𝑡=1

_𝑙,𝑡 = 1, _𝑙,𝑡 ≥ 0, ∀𝑙 (22)

SIGSPATIAL’20, November 2020, Seattle, WA, USA Qiu et al.

called the master program (MP). Here, _𝑙,𝑡 (𝑡 = 1, ...,𝑇𝑙 , 𝑙 = 1, ..., 𝐾)

are the decision variables in MP, where each _𝑙,𝑡 corresponds to an

extreme point in 𝚽𝑙 .

According to [49], most extreme points in DW formulation are

non-basic (i.e., they won’t be visited during the whole search pro-

cess), indicating that MP formulated in Equation (20)-(22) can be

solved by involving only a small portion of extreme points. As such,

we can adopt the column generation algorithm [50] to solve MP:

(I) The algorithm starts by formulating a restricted MP (RMP) (Defini-
tion 7.1), where only a subset of extreme points in MP are included.

(II) In the algorithm, we solve the RMP and test the optimality of its

solution by solving its dual problem D-RMP (definition 7.2). If the

optimal of MP hasn’t been reached, a new extreme point is added

to the RMP to improve the objective value. This process is repeated

until MP’s optimal is found.

The definitions and proposition used in the DW decomposition

are introduced in Appendix D.

The algorithm details. Algorithm 2 gives the details of the col-

umn generation algorithm. The superscript
(𝑛)

denotes the values

set/derived in iteration 𝑛.

Algorithm 2: The column generation algorithm.

input :Λ1, ...,Λ𝐾
output :The optimal solution of MP

1 𝑛 ← 1; // Index of iteration

2 do
3 // Layer 1: Master program

4 (𝝅∗(𝑛) , 𝝁∗(𝑛)) ← D-RMP (Z (𝑛)
1

, ...,Z (𝑛)𝐾);
5 // Layer 2: Subproblems

6 for each 𝑙 = 1, ..., 𝐾 do
7

(
Z
(𝑛)
𝑙

, ẑ(𝑛)
𝑙

)
← sub𝑙

(
𝝅∗(𝑛) , 𝝁∗(𝑛) ;𝝀

)
;

8 if Z (𝑛)
𝑙

< 0 then

9 Z (𝑛+1)𝑙 ←Z (𝑛)𝑙 ∪ ẑ(𝑛)
𝑙

;

10 𝑛 ← 𝑛 + 1;
11 while min𝑙

{
Z
(𝑛−1)
𝑙

}
< −b ;

12 𝝀
∗(𝑛) ← RMP (Z (𝑛)

1
, ...,Z (𝑛)𝐾);

13 return 𝝀
∗(𝑛)

;

The algorithm is composed of two layers: master program and

subproblems. The master program (line 3-4) and the subproblems

(line 5-9) deliver their results to each other until a near-optimal

solution is achieved, i.e., when each Z
(𝑛)
𝑙
≥ b , where b (b ≤ 0) is a

predefined threshold.

Layer1: The optimal (𝝅∗(𝑛) , 𝝁∗(𝑛)) in D-RMP is derived and deliv-

ered to each sub𝑙 (line 4).

Layer2: Each sub𝑙 calculates the optimal

(
Z
(𝑛)
𝑙

, ẑ(𝑛)
𝑙

)
(line 7). If exists

Z
(𝑛)
𝑙

< 0, the optimal solution hasn’t been found (by Proposi-

tion 7.3). An extreme point ẑ(𝑛)
𝑙

is added toZ (𝑛)𝑙 to improve

the solution (line 9). The results calculated by subproblems

are then sent back to the master program.

Finally, the optimal solution 𝝀
∗(𝑛)

is derived in RMP (line 12). [26].

D. Definitions and Propositions used in DW
Decomposition

Definition 7.1. (Restricted master program (RMP)) Given a subset

of extreme points Z𝑙 (Z𝑙 ⊆ Z𝑙) in each 𝚽𝑙 , we define the corre-

sponding restricted master program, denoted by RMP(Z1, ...,Z𝐾),
as the MP with only extreme pointsZ1, ...,Z𝐾 considered:

max

∑
𝑙

∑
𝑡 ∈Z𝑙

_𝑙,𝑡𝑧
𝑡
𝐾+1,𝑙 (23)

s.t.

∑
𝑙

∑
𝑡 ∈Z𝑙

_𝑙,𝑡𝑧
𝑡
𝑘,𝑙

= 1,∀𝑘, (24)

𝑇𝑙∑
𝑡=1

_𝑙,𝑡 = 1, _𝑙,𝑡 ≥ 0,∀𝑙 (25)

and we let 𝝀
∗
denotes the optimal solution of RMP(Z1, ...,Z𝐾).

Definition 7.2. (D-RMP) The dual problem of RMP(Z1, ...,Z𝐾)
[26], denoted by D-RMP(Z1, ...,Z𝐾), is defined as:

min

∑
𝑘

𝜋𝑘 +
∑
𝑙

`𝑙 (26)

s.t.

∑
𝑘

𝑥𝑡
𝑘,𝑙
𝜋𝑘 + `𝑙 ≥ 𝑧𝑡𝐾+1,𝑙 ,∀𝑡 ∈ Z𝑙 , 𝑙 = 1, ..., 𝐾 . (27)

where (𝝅∗, 𝝁∗) (𝝅∗ = [𝜋∗
1
, ..., 𝜋∗

𝐾
] and 𝝁∗ = [`∗

1
, ..., `∗

𝐾
]) denote the

optimal solution of D-RMP(Z1, ...,Z𝐾).

Proposition 7.3. (Optimality test criteria) To test 𝝀
∗
’s optimality

in MP, it is sufficient to test whether (𝝅∗, 𝝁∗) satisfies

min𝑡∈Z𝑙

{∑
𝑘 𝑧

𝑡
𝑘,𝑙
𝜋∗
𝑘
+ `∗

𝑙
− 𝑧𝑡

𝐾+1,𝑙

}
≥ 0, 𝑙 = 1, ..., 𝐾, (28)

where the derivation of

min

𝑡 ∈Z𝑙

{∑
𝑘

𝑧𝑡
𝑘,𝑙
𝜋𝑘 + `𝑙 − 𝑧𝑡𝐾+1,𝑙

}
(29)

is essentially a LP problem (labeled by sub𝑙) with the decision variables
z𝑙 constrained in the polyhedron 𝝀:

min

∑
𝑘

𝑧𝑘,𝑙𝜋
∗
𝑘
+ `∗

𝑙
− 𝑧𝐾+1,𝑙 (30)

s.t. z𝑙 ∈ 𝚽𝑙 . (31)

Proof. First, 𝝀∗ achieves the optimal of MP if only if (𝝅∗, 𝝁∗) is
a feasible solution of the dual problem of MP, D-RMP(Z1, ...,Z𝐾)
[26]. As such, to test 𝝀

∗
’s optimality, it is sufficient to test whether

(𝝅∗, 𝝁∗) satisfies the following condition:

min

𝑡 ∈Z𝑙

{∑
𝑘

𝑧𝑡
𝑘,𝑙
𝜋∗
𝑘
+ `∗

𝑙
− 𝑧𝑡

𝐾+1,𝑙

}
≥ 0, 𝑙 = 1, ..., 𝐾 . (32)

where the derivation ofmin𝑡 ∈Z𝑙

{∑
𝑘 𝑧

𝑡
𝑘,𝑙
𝜋𝑘 + `𝑙 − 𝑧𝑡𝐾+1,𝑙

}
is essen-

tially the problem sub𝑙 (defined in Equation (30)–(31)). □

	Abstract
	1 Introduction
	2 Framework
	3 The Threat Model
	4 Countermeasure: Two-Layer Location Obfuscation Design
	4.1 Layer 1: Fake Trajectory Manager
	4.2 Layer 2: Obfuscation Function

	5 Experimental Validation
	5.1 Benchmarks
	5.2 Dataset
	5.3 Trajectory Inference Algorithms
	5.4 Location Obfuscation Algorithms

	6 Related Work
	7 Conclusions
	References

