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ABSTRACT
To promote cost-effective task assignment in Spatial Crowdsourcing
(SC), workers are required to report their location to servers, which

raises serious privacy concerns. As a solution, geo-obfuscation has

been widely used to protect the location privacy of SC workers,

where workers are allowed to report perturbed location instead

of the true location. Yet, most existing geo-obfuscation methods

consider workers’ mobility on a 2 dimensional (2D) plane, wherein

workers can move in arbitrary directions. Unfortunately, 2D-based

geo-obfuscation is likely to generate high traveling cost for task

assignment over roads, as it cannot accurately estimate the travel-

ing cost distortion caused by location obfuscation. In this paper, we

tackle the SC worker location privacy problem over road networks.

Considering the network-constrained mobility features of workers,

we describe workers’ mobility by a weighted directed graph, which
considers the dynamic traffic condition and road network topology.

Based on the graph model, we design a geo-obfuscation (GO) func-
tion for workers to maximize the workers’ overall location privacy

without compromising the task assignment efficiency. We formu-

late the problem of deriving the optimal GO function as a linear
programming (LP) problem. By using the angular block structure of
the LP’s constraint matrix, we apply Dantzig-Wolfe decomposition
to improve the time-efficiency of the GO function generation. Our

experimental results in the real-trace driven simulation and the real-

world experiment demonstrate the effectiveness of our approach in

terms of both privacy and task assignment efficiency.

CCS CONCEPTS
• Security and privacy→ Security services; • Theory of com-
putation → Mathematical optimization; Parallel algorithms.
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1 INTRODUCTION
With ubiquitous wireless connectivity and continued advances in

positioning technologies in mobile devices (e.g., smartphones), spa-
tial crowdsourcing (SC) is emerging as a novel paradigm to engage

a large number of mobile users (workers) to participate in a variety

of location-based services (LBS) [1, 2], from environmental sensing

(e.g., iRain [3]) to real-time navigation (e.g., Waze [4]) to journalism

and crisis response (MediaQ [5]) to commercial transportation sys-

tems (e.g., Uber-like platforms [6]). In SC, workers are expected to

physically move to the tasks’ location to perform an assigned task

(e.g. provide a ride to a customer, take photos, make measurements).

As such, to promote cost-effective crowdsourcing work, tasks need

to be assigned to workers with low traveling cost (e.g., traveling
distance/time), which requires workers to disclose their location

information to SC servers in real-time. This practice raises privacy

issues that are not only related to whereabouts of workers but

also related to some other sensitive information such as religions,

home/working address, sexual preference, etc [7, 8].

Location privacy protection in SC has been a very active research

area in the past few years [9–19]. Considering mobile devices’

limited computation capability, instead of using cryptographic

techniques [12], a large body of work has been centered on geo-
obfuscation [13–15, 17], a location privacy protection paradigm that

allows workers to report perturbed location instead of true location

to servers. Yet, most existing geo-obfuscation designs still consider

workers’ mobility on a 2 dimensional (2D) plane [20], under which

workers are assumed to be able to move in arbitrary directions at

random speed without any restriction. Nevertheless, when work-
ers’ mobility is constrained by road networks, 2D-based geo-
obfuscation is more likely to generate high cost for task as-
signment (low quality of service (QoS)), i.e., tasks are possibly

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
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Figure 1: Traveling distances
estimated from obfuscated loca-

tionsA and B over roads, where

the distances are calculated by

the Dijkstra’s algorithm, which

can find the shortest path in a

graph [21] (P : Actual location.
Q : Task location.)

The Euclidean distances be-

tween (A, Q), (B, Q), and (P,Q)

on 2D are 480.2m, 490.7m, and

542.3m, respectively.

assigned to workers whose re-

ported locations are physically

near to the tasks, but the actual

traveling cost is high over roads.

Different from on 2D, the sensi-

tivity of traveling cost (cost) es-
timation errors to obfuscation

in road networks varies consid-

erably with the underlying net-

work structure. As the example

in Fig. 1 shows, both obfuscated

locations A and B have a small

deviation from the actual loca-

tion P on 2D and their cost es-

timation errors are close (i.e.,

which are 62.1m and 51.6m, re-

spectively). However, in the road

network, the cost estimation er-

ror generated by B (1350.3m) is

much higher than that of A (70.6m), since a direct path exists from

A to Q (501.2m), while there is an unavoidable detour from B to

Q (1683.1m). Besides the road network topology, other mobility

constraints over roads also impact the QoS, e.g. traffic [22]. To date,

these conditions are not considered in 2D-based methods.

The main reason for the above research gap is that optimal geo-

obfuscation over road networks is a very hard problem. First, the

impact of geo-obfuscation on both privacy and QoS may vary sig-

nificantly over different road segments. As such, geo-obfuscation

needs to be adaptive to various local road network topology and traf-

fic conditions, which generates high computation load. On the other

hand, the geo-obfuscation derivation has to be highly time-efficient,

as the obfuscation needs to be updated continuously as workers

move from one road segment to another. Moreover, the sensitivity

of QoS to geo-obfuscation is non-static over time, i.e., it may change

frequently due to traffic conditions [23] (e.g., peak/off-peak hours)

and dynamics of the worker pool (e.g., workers can enter/leave the

platforms at any time as needed) [15, 16].With these concerns, a key

challenge is how to design a geo-obfuscation approach with high
time-efficiency to protect worker location privacy over complex road
networks, particularly in highly dynamic large-scale SC systems.

In this paper, we tackle the aforementioned issues by developing

a time-efficient geo-obfuscation strategy to protect SC worker location
privacy over road networks. Rather than assuming workers’ mobility

on 2D, we describe workers’ mobility in a time-varying weighted
directed graph, a straightforward and convenient model to take into

both road network topology and dynamic traffic conditions. On

the basis of this new mobility model, we design a geo-obfuscation
(GO) function to provide a reference for workers to select their

obfuscated location. The objective of the GO function design is

twofold: i) maximize the overall privacy level of all the workers and
ii) ensure the cost-effectiveness of task assignment.
i) Privacy level maximization. The privacy criteria we aim to

maximize is the expected inference error (EIE) [24], i.e., the expected
distortion from the estimated location (by adversary) to the ac-

tual location. EIE assumes certain types of prior information that

the adversary may obtain, but without considering the posterior
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Figure 2: Example: Impact of worker distribution on QoS.
C-I: Worker Alice and task T1 are in the region. There is no quality loss if

Alice selects location “A” to report as T1 will be always assigned to Alice.
C-II: Task T2, and workers Bob and Charlie are added, where the optimal

assignment is to assign T1 to Charlie and T2 to Bob. To preserve the assign-

ment optimality, Alice has to limit her obfuscated location in a “safe region”.

If she selects her obfuscated location as “A” that is outside the safe region,

T1 will be assigned to Alice, which increases the cost to complete T1.

information leakage from obfuscated location. As a complemen-

tary criterion, we also require the GO function to achieve geo-
indistinguishability (GI) [13], which limits the posterior information

leakage through a differential privacy based criterion.

ii) Cost effective task assignment. To promote a cost-effective

assignment, existing geo-obfuscation methods (e.g., [16, 24]) pri-

marily focus on reducing the cost estimation error for single worker,
but without considering the worker location distribution over the

region as a whole. In fact, worker location distribution significantly

impacts to what extent the cost estimation error is allowed for

high QoS. Fig. 2(a)(b) gives an example, which illustrates that the

selection of the same obfuscated location (“A”) with the same cost

estimation error to the task (T1) may lead to a significantly different

impact on QoS given different worker distribution around. As such,

by performing task assignment sensitivity analysis, we identify a

“safe” region for each worker’s obfuscated location, within which

the obfuscated location still preserves the assignment optimality.

Considering the uneven distribution of workers, the privacy levels

of all workers are preserved but can be achieved at different levels

across different regions. For example, in the downtown area, the ob-

fuscation is limited to 0.5kmmaximum for the sake of QoS, but such

constraint is unnecessary to be enforced in the rural area, where

workers are sparsely distributed with larger safe regions on average.

To achieve both objectives i) and ii), we formulate the problem of

GO function generation (GFG) as a linear programming (LP) problem.

To solve GFG, the standard LP approaches (e.g., the simplexmethods

[25]) will generate extremely high computation load due to GFG’s

complexity. As a solution, we first conduct constraint reduction by

exploring network features of GI (Corollary 3.1). Further, by using

the angular block structure of the GFG’s constraint matrix, we apply

Dantzig-Wolfe decomposition to reformulate GFG into a two-level

optimization framework, which is composed of a master program
and a set of subproblems. The problems in both levels can be solved

efficiently and a near-optimal solution of the original GFG can be

iteratively derived via the communication between the two levels.

With respect to performance, simulation results based on Rome

taxi trajectory records [26] (including over one million GPS traces)

demonstrate that the privacy (measured by EIE) achieved by our

approach outperforms the state-of-the-art algorithms by 45.2% on

average. Moreover, the simulation results indicate that, compared
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Figure 3: The framework of geo-obfuscation in SC.

with the 2D-based strategy, our approach reduces the total traveling

cost of participated workers by 14.22% on average.

In a nutshell, our contributions can be summarized as follows:

1) We develop a mobility model for SC workers operating over

roads by taking network-constrained features of workers over roads.

Based on the model, we design a GO function for workers to choose

their obfuscated location over the road network.

2) We formulate the problem of deriving the GO function as an LP

problem, called GFG,which aims tomaximize theworker overall pri-

vacy without compromising the QoS. GFG is novel not only because

it is a new class of location privacy protection problem, but also due

to the network-constrained mobility features taken into account

in the framework that can be applied to other LBS applications.

3) We design a time-efficient algorithm to solve GFG via constraint

reduction and Dantzig-Wolfe decomposition. We conduct a simu-

lation based on real-world dataset to test the performance of our

strategy. The experimental results demonstrate the superiority of

our method over the state of the arts. We also developed an SC

prototype and carried out a pilot study based on the prototype.

2 OVERALL APPROACH
Fig. 3 shows our geo-obfuscation framework in the SC system. In-

stead of frequently requiring location report from workers, our

framework only requires workers to upload their obfuscated loca-

tion before a snapshot of task assignment [15]. Before uploading

location, workers first need to download a GO function generated

by the server, and use the function to select the obfuscated location.

Consistent with state-of-the-art methods [16, 24], we assume that

the server may suffer from passive (eavesdropping) attack, not ac-
tive (modification) attacks, i.e., the adversary may obtain workers’

location information and the GO function, but is unable to modify

the GO function.

With the GO function, each worker takes his/her current location

as the input and obtains a probability distribution of the obfuscated

location as the output. Fig. 3 gives an example, where workers’

possible location is assumed to be discrete: {v1,v2,v3,v4}. In this

case, the GO function can be represented as a (4×4)-matrix. Suppose

that a worker’s actual location is v2. As indicated by the matrix in

Fig. 3, the probabilities that this worker selects v1, v2, v3, and v4 as
the obfuscated location are 0.1, 0.4, 0.3, and 0.2, respectively.

Note that although the server takes charge of generating the

GO function, the workers’ location privacy is still guaranteed [15].

Specifically, the GO function is designed to satisfy the privacy crite-

ria (EIE and GI) even if the adversary knows workers’ reported lo-

cation and the GO function (more details will be given in Section 3).

In each round of task assignment, workers can label their status

by either available or occupied. Only available workers are consid-
ered as candidates for the task assignment and are responsible for

reporting their locations to the server. Once receiving a task, each

available worker will head towards the assigned task location in-

stantly. The worker’s status will be switched to occupied and the sta-

tus won’t be switched back to available until the worker completes

a task and is ready for new ones. For simplicity, in what follows,

when we mention “workers”, we refer to “available workers”.

As illustrated in Fig. 2(a)(b), we cannot ignore the impact of the

worker location distribution on the sensitivity of QoS to obfuscation.

Accordingly, we consider the worker location distribution (derived

from workers’ reported location) as a key parameter to generate

the GO function. As Fig. 3 shows, the whole process of our geo-

obfuscation strategy is composed of two steps:

Step I: Assignment sensitivity analysis. Givenworkers’ reported
location as the input, the SC server needs to distribute each task to

at least one worker, to minimize the total traveling cost of all the

participated workers. Although geo-obfuscation inevitably intro-

duces errors to the input, we note that such errors do not necessarily

degrade the QoS if the errors are controlled. As such, we derive a

“safe region” for each possible obfuscated location by resorting to

sensitivity analysis of the task assignment, such that the obfuscation

within such region preserves the assignment optimality.

Step II: GO function generation. After being initialized, the GO

function needs to be updated by the server based on the change of

workers’ reported location in each round of task assignment. We

assume the overall workers’ location distribution to be spatially

correlated in adjacent rounds [23], which allows workers to ob-

fuscate their current location with the GO function derived in the

previous round [15]. The GO function specifically focuses on the

following two goals:

G1) Cost-effective task assignment, i.e., the task assignment based

on the geo-obfuscated location achieves a near-optimal assignment.

To achieve this goal, for each real location, its obfuscated location

is limited to its safe region (derived in Step I) with a high probability

by the GO function.

G2) Location privacy maximization, i.e., EIE is maximized and GI is

satisfied. Considering that workers are unevenly distributed over

the road network, we allow the privacy levels (in term of EIE) to be

achieved in different levels in different regions.

3 MODEL
In this section, we introduce the system model, including the math

notations and the assumptions used throughout the paper.

GO Function. We letV denote the possible location set of workers

over the road network. The GO function X can be then represented

as a map:V → F , where F denotes the set of probability distribu-
tions overV . That is, given a worker’s true location v ∈ V as the

input, X returns the corresponding probability distribution fv ∈ F
as the reference for the worker to select his/her obfuscated location

to report. Considering the computational tractability of the GO

function generation, like [13, 14], we consider the workers’ possi-

ble location as a discrete and finite set V = {v1, ...,vK }. As such,
a more efficient representation of the GO function is by means of

a stochastic matrix X = {xk ,l }K×K , namely the GO matrix, where
each xk ,l denotes the probability of takingvl as the obfuscated loca-
tion given the actual location vk . In this case, given a real location

vk as the input, the GO function returns a vector [xk ,1, ..., xk ,K ],
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Figure 4: Example of the graph model (The points represent the
locations in V, and {B,C , D } are the out-neighbors of A).

where each xk ,l (l = 1, ...,K) specifies the probability of selecting

vl as the obfuscated location.

Graph-basedMobilityModel. Considering the network-constrained
mobility features of workers over a road network, we model work-

ers’ mobility in a weighted directed graph. The model assumes that

all the locations in V are in the road network. For each pair of

locations vk ,vl ∈ V , we use ck ,l to denote the lowest traveling cost
(or traveling cost for simplicity) from vk to vl over the roads, e.g.,
which can be interpreted as the shortest traveling distance [16],

the lowest traveling time [23], or their combination in the road

network. As ck ,l is impacted by traffic condition and may change

over time, ck ,l needs to be updated by the SC server in each round.

By connecting each vk ∈ V to each of its out-neighbors vn
(Definition 3.1) with a directed edge ek ,n from vk to vn , we build
a weighted directed graph G = (V, E), whereV and E ⊆ V ×V

denote the node set and the edge set, respectively. The weight of
each edge ek ,n is set by ck ,n . Fig. 4 gives an example on building

the graph given the discrete locations in the road network, where

traveling distance is considered as the “cost”. Proposition 3.1 implies

that it is sufficient to use G to derive ck ,l for any pair of locations

vk ,vl ∈ V , as the derivation of ck ,l is essentially to find the shortest
path (Definition 3.2) from vk to vl in G.

Definition 3.1. (Out-neighbor and in-neighbor) ∀vk ,vl ∈ V , vl
is defined as an out-neighbor of vk (and also vk is defined as an in-

neighbor of vl ), if workers can travel from vk to vl via the shortest
route without visiting any other location inV .

Definition 3.2. (Shortest path) ∀vk ,vl ∈ V , the shortest path
from vk to vl in G is defined as the path from vk to vl such that the
total sum of the edges weights is minimum.

Proposition 3.1. ∀vk ,vl ∈ V , cl ,k is equal to the sum weight
of the shortest path from vk to vl in G (detailed proof can be found
in our technical report in [27]).

Threat Model and Privacy Criteria. Like [14, 28], we assume

that the SC server may suffer from an eavesdropping attack, i.e.,

information such as workers’ reported location, the GO matrix X,
and workers’ prior location distribution fP (vk ) (vk ∈ V) can be

possibly disclosed or leaked to an adversary. The adversary can

then estimate the probability distribution of workers’ real location

via Bayesian inference models [15, 17].
We let the random variables P and P̃ denote a worker’s real

and obfuscated locations, respectively. Given a worker’s reported

location vl , the adversary first estimates the posterior probability
of the worker’s real location by resorting to the Bayes’ Equation:

fP |P̃=vl
(vk ) =

fP (vk )xk ,l∑
j fP (vj )x j ,l

, ∀k = 1, 2, ...,K . (1)

Based on the posterior, the adversary then estimates the worker’s

actual location by finding the location v̂ ∈ V that minimizes the

expected inference error, i.e.,

v̂ = argminvr ∈V
∑
vk ∈V fP |P̃=vl

(vk )d(vr ,vk ), (2)

where d can be either Hamming distance or Euclidean distance

[17, 24]. Like [17, 24], in this paper, we consider d as Euclidean

distance. The model is straightforward to be extended to Hamming

distance.

A) Expected inference error (EIE). We define the adversary’s EIE, also

known as the unconditional expected privacy [24, 29], by∑
l Pr

(
P̃ = vl

) ∑
k fP |P̃=vl

(vk )d(v̂,vk ) =
∑
l xK+1,l , (3)

where xK+1,l = minvr
∑
k fP (vk )xk ,ld(vr ,vk ) (l = 1, ...,K ) (4)

is an intermediate variable to facilitate the computations (details

are given in Section 4.2). EIE essentially describes the expected

distortion from the estimated location (by adversary) to the actual

location, and higher EIE implies higher privacy level achieved. For

simplicity, we let xl = [x1,l , x2,l , ..., xK ,l , xK+1,l ]
⊤
(l = 1, ...,K ).

B) Geo-indistinguishability (GI). EIE assumes certain types of prior

information that the adversary may obtain, but does not consider

the posterior information leaked from obfuscated location. As such,

we require the GO function to achieve GI [13], which limits the

posterior information leakage through a differential privacy based

criteria. GI over roads is formally defined in Definition 3.3 [16]:

Definition 3.3. (GI) A GO function X satisfies ϵ-GI if Equ. (5) is
satisfied ∀vj ,vk ∈ V ,

fP |P̃=vl
(
vj

)
fP |P̃=vl (vk )

≤ e
ϵ min

{
cj ,k ,ck , j

}
×
fP

(
vj

)
fP (vk )

, ∀vl ∈ V (5)

where ϵ is the parameter to quantify how much the worker’s actual
location is disclosed according to the reported location, i.e., higher ϵ
implies more information disclosed and a lower privacy level achieved.

Intuitively, Equ. (5) indicates that the reported location vl won’t
provide enough information to adversary to distinguish the true

location among nearby ones. According to Definition 3.3, given each
possible obfuscated location vl , we need to check the posteriors

of each pair of locations vj ,vk ∈ V , which generates O(K3) con-

straints in total. Fortunately, the transitivity property of GI over

roads (Theorem 3.2) allows us to reduce the number of constraints

from O(K3) to O(KH ) without losing the optimality (Corollary 3.1),
where H = |E | denotes the number of edges in G.

Theorem 3.2. (Transitivity [16]) Given any pair of locations
v1,vn ∈ V connected by the shortest path: (v1,v2) → ...→ (vn−1,vn ),

Each pair (vk ,vk+1) satisfies ϵ-GI (k = 1, ...,n − 1) ⇒ (v1,vn ) satisfies ϵ-GI.

Corollary 3.1. (Constraint reduction) The end locations of each
edge in G satisfies ϵ-GI⇒ Each pair of locations inV satisfies ϵ-GI.

Corollary 3.1 indicates that, to satisfy ϵ-GI, it is sufficient to for-

mulate the GI constraints only for the end points of each edge in G,

where the total number of GI constraints isO(KH ). In practice, as G
is approximately a planar graph, the number of edges and nodes inG

are actually close, i.e., H ≈ K , which will be also demonstrated by a

real-dataset in Table 1 in Section 6. Hence, after the constraint reduc-

tion, the number of GI constraints in GFG is approximately O(K2).
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Finally, by plugging the real location posterior (Equ. (1)) into

Equ. (5), the GI constraints for each obfuscated location vl can be

rewritten as a set of linear constraints for xl :

xk ,l fP
(
vj
)
− eϵc j ,k fP (vk )x j ,l ≤ 0,∀(vk ,vj ) ∈ E . (6)

For simplicity, we use ΦGI

l to represent the GI constraint matrix for

xl , i.e., ΦGI

l xl ≤ 0, where ΦGI

l has 2H rows and K + 1 columns:

ΦGI

l =


. . . · · · · · · · · · . .

. ...
· · · fp (vj ) · · · −eϵcj ,k fp (vk ) · · · 0

· · · −eϵcj ,k fp (vj ) · · · fp (vk ) · · · 0

. .
.

· · · · · · · · ·
. . .

...


}
∀ej ,k
∈ E

where each 2 rows correspond to a pair of adjacent locations in G.

4 SYSTEM DESIGN
In this section, we introduce the design of our geo-obfuscation

strategy, including the assignment sensitivity analysis (in Section

4.1) and the GO function generation (in Section 4.2).

4.1 Task Assignment and Sensitivity Analysis
Task assignment. We consider a scenario where M tasks need

to be assigned to N workers (N > M , i.e., the platform has more

workers than tasks [6]). The objective of task assignment is to

ensure each task to be assigned to one worker and the total traveling

cost of all the participated workers is minimized. The assignment

can be represented by an indicator matrix Z = {zi , j }N×M , where

each zi , j indicateswhether task j is assigned toworker i , i.e., zi , j = 1

if task j is assigned to worker i; otherwise, zi , j = 0. Z needs to

satisfy the constraints

∑
i zi , j = 1 for each j (j = 1, ...,M), i.e., each

task j is assigned to one worker, and the constraints

∑
j zi , j ≤ 1

for each i (i = 1, ...,N ), i.e., each worker i can complete up to 1

task. We let Ω =
{
Z
��∑i zi , j = 1,∀j,

∑
j zi , j ≤ 1, ∀i

}
denote the

constrained space for Z. Given each worker i’s reported location

vli (i = 1, ...,N ) and each task j’s location vqj (j = 1, ...,M), the

task assignment problem can be formulated as:

min

∑
i
∑
j cli ,qj zi , j s.t. Z ∈ Ω, zi , j ∈ {0, 1} , (7)

which can be solved by well-developed algorithms like the Hungar-
ian algorithm or linear programming (LP) based methods [25].

Sensitivity analysis. We choose to use LP based approaches to

solve the assignment problem, from which we can make use of well-

developed LP sensitivity analysis (SA) tools to yield a “safe region”

for geo-obfuscation [25]. Specifically, we first relax the assignment

problem to LP by removing the integrality constraints zi , j ∈ {0, 1}
in Equ. (7). After that, we derive the optimal solution of the relaxed

problem with standard LP approaches (e.g., the simplex methods

[25]). As the constraint matrix (defined by Ω) is totally unimodular,
the LP’s solution has to be integral, indicating that it is also the

optimal solution of the original assignment problem [25]. In what

follows, we let Z̃ represent the optimal assignment derived based

on the workers’ obfuscated location.

As we have assumed, the workers’ location distribution is spa-

tially correlated in adjacent rounds, which allows us to derive the

GOmatrix in the next round based on the workers’ current reported

location. Given the existing reported locations vl1 , ..., vlN ′ from
unsigned workers (without loss of generality, assuming workers

i = 1, ...,N ′ receive no assignment), we aim to identify a “safe

region” of obfuscated location for any new report. Particularly, for

each candidate obfuscated location vl ∈ V from worker i ′, we
derive vl ’s critical region Θcri

l (Θcri

l ⊆ V) via SA, such that the

corresponding real location within Θcri

l generates the same optimal

solution with Z̃:

Θcri

l =
{
vk

���Z̃ = argminZ∈Ω

(∑
j ck ,qj zi′, j (t) +

∑N ′
i=1

∑
j cli ,qj zi , j

) }
.

Here,

∑
j ck ,qj zi′, j (t) and

∑N ′
i=1

∑
j cli ,qj zi , j respectively represent

the real cost of worker i ′ and the estimated total cost based on the

existing reports in Z.Θcri

1
, ...,Θcri

K can be derived in parallel with the

existing SA works [25]. Given a worker’s real location, we define

the safe region of obfuscation as the set of locations’ with critical

region covering the real location. Clearly, if each worker selects

the obfuscated within the safe region, the assignment will achieve

a near-optimal solution. Fig. 5 gives an example to compare the

safe regions of one location (“A”) with different workers distributed

around, which implies that the worker has smaller “safe region”

when the density of workers is higher over the region.

Critical region constraints. To ensure each obfuscated location

to be within the safe region with a high probability, we require

that for any candidate obfuscated location vl , the posterior of real

location covered by Θcri

l , Pr

(
P ∈ Θcri

l

��P̃ = vl ) , is no smaller than

a threshold 1 − η, defining the critical region constraints:

Pr

(
P ∈ Θcri

l

��P̃ = vl ) ≥ 1 − η, (8)

where η ∈ [0, 1) is a predefined small constant. By plugging the

posterior (Equ. 1) into Equ. (8), the critical region constraints can

be also written as a set of linear constraints for xl (l = 1, ...,K ):∑
j fP (vj )x j ,l −

∑
vk ∈Θ

cri

l
fP (vk )xk ,l /(1 − η) ≤ 0. (9)

For simplicity, we use a (K + 1)-dimension vector ΦCr

l to represent

the critical region constraint vector for xl , i.e., ΦCr

l xl ≤ 0, where
ΦCr

l = [fP (v1) , ..., fP (vl ) −
∑
vk ∈Θ

cri

l
fP (vk )/(1 − η)︸                                       ︷︷                                       ︸

the l th element

, ..., fP (vK ), 0]

Note that even with the critical region constraints, the optimality

of the task assignment still cannot be guaranteed due to the fol-

lowing two reasons: 1) The safe region of obfuscated location for

each worker is calculated separately, but without considering the

uncertainty of other workers’ obfuscated location. 2) The derived

safe region is calculated based on workers’ reported location in the

last round and hence it is possibly “unsafe” in the current round.

The above two limitations are unavoidable. For 1), it is computa-

tional intractable to derive the safe regions for all the workers, as the

number of possible combinations of estimated costs from workers

increases exponentially with the number of workers. For 2), calculat-

ing the GO function with the reported location in the current round

is infeasible, since workers cannot report their location before the

GO function being generated. However, even with these two lim-

itations, our approach still approximates the optimal assignment

closely according to the experimental results (Fig. 10(b) in Section 6).

4.2 GO Function Generation Problem
The GO function is initialized when the system is first setup. After

then, the server updates the GO function (matrix) at each round

based on the workers’ new reported location as well as the critical

regions derived from the assignment sensitivity analysis. By taking

the GO matrix X as the decision variable, we formulate the problem
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(a) # of workers = 5
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(b) # of workers = 15

Figure 5: Example: the safe region of the location A.

of generating the GO matrix as a mathematical optimization prob-

lem, of which the objective is to maximize the overall expected infer-

ence error (EIE)

∑
l xK+1,l (Equ. (3)), while satisfying both critical

region constraints (Equ. (9)) and GI constraints (Equ. (6)). According
to Equ. (4), we have xK+1,l −

∑
k fP (vk )xk ,ld(vr ,vk ) ≤ 0, ∀vr ∈ V ,

which can be also written in the form of ΦIn

l xl ≤ 0, where ΦIn

l is a

matrix with K rows and K + 1 columns:

ΦIn

l =


−fP (v1)d (v1, v1) · · · −fP (vK )d (v1, vK ) 1

...
. . .

...
...

−fP (v1)d (vK , v1) · · · −fP (vK )d (vK , vK ) 1


Given that the constraints ΦGI

l xl ≤ 0, ΦCr

l xl ≤ 0, ΦIn

l xl ≤ 0, and
the objective function

∑
l xK+1,l are all linear, and the decision

variables X = {xk ,l }K×K are defined in a continuous region, the

GO function generation (GFG) problem can be formulated as an LP

problem:

max

∑
l

xK+1,l (10)

s.t. ΦGI

l xl ≤ 0, ΦCr

l xl ≤ 0, ΦIn

l xl ≤ 0, ∀l (11)∑
l

xk ,l = 1, ∀k (prob. unit measure) (12)

Note that in the GI constraints (Equation (5)) and the critical

regions constraints (Equation (9)) of GFG, distances between work-

ers/tasks are defined over the road network and can be updated by

the server in each round based on the traffic. Therefore, both road

network topology and traffic dynamics have been considered by

the solution of GFG. GFG can be solved by standard LP approaches

such as the simplex methods [25]. This, however, introduces chal-

lenges with respect to time efficiency and scalability. The number

of decision variables in the GO matrix X is quadratic to the number

of discrete locations inV , e.g., thousands of discrete locations will

generate millions of decision variables in GFG, leading to an ex-

tremely high computation load. On the other hand, to account for

realistic applications where worker location distribution changes

all the time, the derivation of optimal X is supposed to be time-

efficient to handle the highly dynamic inputs. To tackle this issue,

in Section 5, we introduce how to generate the GO matrix in a

scalable and time-efficient way.

5 GO FUNCTION GENERATION
A promising route to solve large-scale LP problems is to adopt de-
composition techniques based on how decision variables in the prob-

lems are coupled [30]. For simplicity, we let x =
[
x⊤
1
. . . x⊤K

]⊤




















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1
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Figure 6: DW decomposition.

and Φl =
[
ΦGI⊤
l ΦCr⊤

l ΦIn⊤
l

]⊤
. The whole GFG constraint ma-

trixΦ for x (i.e.,Φx ≤ 0) is shown in Fig. 6(a), where a block angular
structure can be found, i.e., 1) the constraint matricesΦ1, ...,ΦK (for

x1, ..., xK respectively) are all disjoint; 2) only the joint constraints∑
l xk ,l = 1 (k = 1, ...,K) link together the different decision vec-

tors x1, ..., xK . Such block angular structure makes GFG well-suited

to Dantzig-Wolfe (DW) decomposition [31].

DW decomposition relies on column generation (CG) to improve

the tractability of large-scale LP [32]. By rewriting GFG in a DW

formulation (defined in Equation (13)-(14)) and solving it via the

revised simplex method [25], most extreme points of GFG are non-

basic (i.e., the corresponding decision variables are set by zero)

during the whole search process [33]. Therefore, the DW formu-

lation can be solved by involving only a portion of extreme points.

5.1 DW Formulation
We let Λl denote the polyhedron defined by the constraint matrix

Φl (l = 1, ...,K ) and let Xl =
{
x̂1l , ..., x̂

Tl
l

}
denote the set of extreme

points of Λl . Then, any decision vector xl ∈ Λl can be represented

as a convex combination of x̂1l , ..., x̂
Tl
l (Minkowski-Weyl’s Theorem

[25]): xl =
∑Tl
t=1 λl ,t x̂

t
l , where

∑Tl
t=1 λl ,t = 1 and λl ,t ≥ 0. Replac-

ing xl by
∑Tl
t=1 λl ,t x̂

t
l , GFG can be rewritten as the followingmaster

program (MP):
max

∑
l

∑
t
λl ,t x̂

t
K+1,l (13)

s.t.

∑
l

∑
t
λl ,t x̂

t
k ,l = 1, ∀k ,

Tl∑
t=1

λl ,t = 1, λl ,t ≥ 0, ∀l (14)

The decision variables in MP are λl ,t (t = 1, ...,Tl , l = 1, ...,K ) and
each λl ,t corresponds to an extreme point in the polyhedron Λl .
Since the total number of extreme points in all the polyhedrons

are exponential to K (the number of discrete locations in V ), MP

itself does not decrease the time complexity if it is solved directly

by standard LP approaches. Fortunately, most extreme points in

DW-formulated MPs are non-basic when searching the optimal

[33], indicating that the idea of CG can be applied.

5.2 The Column Generation Algorithm
The algorithm is composed of the steps S1-S3 (the pseudo code can

be found in the technical report [27]):

S1: Initialization. By considering only a subset of extreme points

in MP, a restricted MP (RMP) (Definition 5.1) is formulated.

Definition 5.1. (RMP) Given a subset of extreme pointsXl (Xl ⊆
Xl ) in each polyhedron Λl , we define the corresponding RMP, denoted
by RMP(X1, ...,XK ), as the MP with onlyX1, ...,XK being considered:
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λ
∗
=

{
max

∑
l
∑
t∈Xl

λl ,t x̂ tK+1,l
s.t.

∑
l
∑
t∈Xl

λl ,t x̂ tk ,l = 1, ∀k ,
∑Tl
t=1 λl ,t = 1, λl ,t ≥ 0, ∀l

}
where λ

∗
denotes the optimal solution of RMP(X1, ..., XK ).

Here, we also define the dual problem of RMP (D-RMP), which

will be used in S2.
Definition 5.2. (D-RMP) The dual problem of RMP(X1, ..., XK )

[25], denoted by D-RMP(X1, ..., XK ), is defined as:

(π ∗, µ∗) =

{
min

∑
k πk +

∑
l µl

s.t.
∑
k x̂ tk ,l πk + µl ≥ x̂ tK+1,l , ∀t ∈ Xl , l = 1, ..., K .

}
where (π∗, µ∗) (π∗ = [π∗

1
, ..., π∗K ] and µ

∗ = [µ∗
1
, ..., µ∗K ]) denotes the

optimal solution of D-RMP(X1, ..., XK ).

S2: Optimality test. We solve the RMP and test whether its solu-

tion λ
∗
achieves MP’s optimal based on Proposition 5.1.

Proposition 5.1. (Optimality test criteria) To test λ
∗
’s optimality

in MP, it is sufficient to test whether (π∗, µ∗) defined in Definition

5.2, satisfies mint ∈Xl

{∑
k x̂

t
k ,lπ

∗
k + µ

∗
l − x̂

t
K+1,l

}
≥ 0 (l = 1, ...,K .),

where the derivation ofmint ∈Xl

{∑
k x̂

t
k ,lπk + µl − x̂

t
K+1,l

}
is essen-

tially an LP problem (labeled by subl ) with the decision variables xl
constrained in the polyhedron Λl :

subl : x∗l =
{

min

∑
k xk ,lπ

∗
k + µ

∗
l − xK+1,l s.t. xl ∈ Λl .

}
where x∗l is the optimal solution of subl . The detailed proof of Propo-
sition 5.1 can be found in our technical report in [27].
S3: Column generation. We use ζl to denote the objective value

of subl , i.e., ζl = minxl ∈Λl
{∑

k xk ,lπ
∗
k + µ

∗
l − xK+1,l

}
. If ∃ζl < 0,

the optimal of MP hasn’t been achieved. Then, the corresponding

subl will suggest a new extreme point (column) to add to the RMP

to improve the objective value. After that, we move to S2 to test

the optimality of the new solution.

S3 and S2 is repeated until the MP’s optimal is found. As Propo-

sition 5.1 indicates, the process of optimality test can be partitioned

into a list of subproblems sub1, ..., subK , where each subl (l =
1, ...,K) has its decision variables xl only constrained in the poly-

hedron Λl . As the decision variables x1, ..., xK are fully decoupled

in sub1, ..., subK , they can be derived in parallel. As Fig. 6(b) shows,

the process of S2 and S3 follows a two-layer framework: a RMP in

the upper layer and sub1, ..., subK in the lower layer. The two layers

communicate with each other and are updated in each iteration,

until the RMP’s optimal solution converges to the MP’s optimal.

We use the superscript
(n)

to denote the values set/derived in

iteration n. Note that RMP and each subl can be solved efficiently

in each iteration, as they only contain O(K) decision variables (i.e.,

(π , µ) and xl ). When the algorithm converges to the near optimal,

we need to solve RMP(X
(n)
1

, ...,X
(n)
K ), which has at mostnK decision

variables, as we only add up to 1 column for each polyhedron in

each iteration. Hence, the next question is how many iterations

(denoted by L) are needed for convergence.

Convergence analysis. To improve the speed of convergence, in

S1, we initialize each Xl by the extreme point el (i.e., a K + 1

dimension vector with the lth entry equal to 1 and all the other

entries equal to 0). It means that the initial RMP only includes

the extreme points e1, ..., eK . By selecting e1, ..., eK , the feasible

A
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I

(a) Heap map of GPS records over Rome.
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Figure 7: The Rome taxi cab dataset.

region of the RMP is guaranteed to be non-empty, i.e., there is

always a feasible solution λ with λ1l = 1 and λtl = 0 ∀t > 1 (l =

1, ...,K ), which ensures D-RMP to be bounded and hence improves

the algorithm convergence at the beginning [32].

Nevertheless, in CG, there is possibly a long tail of the conver-

gence (pointed out by our experimental results in Fig. 8(a)). As

a solution, we set a negative threshold ξ with small magnitude,

such that the algorithm will be ended immediately once minl {ζl }
reaches ξ . Our experimental results indicate that, with proper value

set to ξ , the convergence of CG will be improved significantly (e.g.,

use up to 5 iterations in Fig. 8(d) and Fig. 12(c)) with the objective

value (EIE) sacrificed a little (e.g., by up to 6.37% in Fig. 10). More

details will be discussed in Section 6.1.

For theoretical interests, we give an upper (dual) bound of the

MP’s optimal in Theorem 5.2 to check how close our solution can

achieve the optimal:

Theorem 5.2. In each iteration n of the CG algorithm,

ω(n) =
∑
k π
∗(n)
k +

∑
l

(
µ
∗(n)
l − ζ

(n)
l

)
(15)

offers an upper bound of MP’s optimal. The detailed proof can be
found in our technical report in [27].

6 PERFORMANCE EVALUATION
In this section, we turn our attention to practical applications of our

geo-obfuscation approach. We carry out an extensive evaluation

of our method using a real dataset of over one million vehicle GPS

records in Section 6.1, and report experimental results with our sys-

tem prototype in Section 6.2. The main metrics we measure include:

(i) Privacy level: Expected inference errors (EIE) defined by Equ. (3).

(ii) Total traveling cost, defined as the total traveling distance of all

the participatingworkers to the task location.We primarily consider

“traveling distance” as the cost in the experiments as other related

metrics, e.g. traveling time, are hard to measure in the dataset. The

traveling distance from each worker to his/her task is calculated

using the Dijkstra’s algorithm [21].

(iii) Number of iterations to derive the GO function in CG.

6.1 Trace-driven Simulation
Dataset. We conduct simulations by using a publicly available taxi

cab trajectory dataset in Rome [26]. We select to use a taxi dataset

since taxi services can be also considered as a type of SC operating

over the road network, where a customer’s “pickup location” can

be considered as the task location. The dataset contains GPS coor-

dinates of approximately 290 taxis in Rome collected over 30 days.

Fig. 7(a) depicts the heat map of all taxi cabs’ recorded location. As

shown, the taxi cabs’ location records are not evenly distributed
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Figure 8: Time efficiency of CG.

over the city, e.g., taxi cabs are more likely located in downtown

rather than in the suburbs. We grid the whole map, and select 9

regions “A”, “B”, ..., “I” (Fig. 7(a) shows the regions on the map) to

check how the workers’ density can impact both privacy and QoS,

e.g. “A”–“C” are in downtown with high-density workers, while

regions “D”–“I” are in suburbs with low-density workers. Fig. 7(b)

compares the number of GPS records in different regions.

Benchmarks. We compare our geo-obfuscation strategy with two

representative geo-obfuscation algorithms:

1) 2D-based approach (2D) [15], which aims to minimize the total

traveling cost with geo-indistinguishability satisfied.

2) VSC-Based approach (VSC) [16], which aims to protect location

privacy of vehicles in SC, with vehicles’ network-constrained mo-

bility features considered. Similar to our method, VSC determines

the obfuscation function by following an LP framework. But the

objective of VSC is to minimize the cost estimation error of a single

worker without considering the worker distribution over the region.

3) Laplacian obfuscation (Laplace), where the obfuscation probabil-

ities are calculated by fP̃ |P=vk
(vl ) ∝ e

−ϵ
d (vl ,vk )
Dmax , and Dmax is the

maximum distance between any two locations in the target region.

Time-efficiency. In Corollary 3.1, we have theoretically proved

that the number of GI constraints is reduced to O(KH ) by using

constraint reduction, where K and H denote the number of nodes

and the number of edges in the graph G, respectively. We now

test how the number of GI constraints is actually reduced in the

real-world road map. We sample a set of discrete locations in each

region, where every 10 road segments1 have at least one location
point sampled. We then build the weighted directed graph given

the sample in each region. Table 1 shows the ratio of H to K in G

across different regions as well as the percentage of GI constraints

reduced by the constraint reduction. The table demonstrates that

1) H is not significantly higher than K in any region, e.g., H/K is at

1
Road segment is defined as the segment without furcation, turn, joining with other

road segments [16]

most 1.42; 2) the number of GI constraints is significantly reduced

by constraint reduction, i.e., on average it is reduced by 99.5%.

Table 1: Constraints reduction.
Regions A B C D E F G H I

H/K ratio 1.31 1.42 1.19 1.28 1.08 1.21 1.22 1.27 1.22

Pct. of constraints reduced 99.9 99.8 99.6 99.7 99.5 99.3 99.5 99.0 99.4

We next evaluate the time efficiency of CG. Here, we only depict

the results for region “A” as a representative, which has relative

higher number of road segments (9,861 segments) and taxis’ GPS

records (163,938 records), which tends to generate higher compu-

tation load. Fig. 8(a) shows the change of minl {ζl } over iterations
(i.e., the algorithm achieves the optimal whenminl {ζl } = 0 (Propo-

sition 5.1)). We have two observations from the figure: 1) minl {ζl }
converges faster when the location sample size K is smaller, and

2) after a fast convergence of minl {ζl } in first 3 or 4 iterations,

there is a long tail in the convergence. In Fig. 8(b), we also show

the dual gap of the algorithm, i.e., the gap between ω(n) (derived
in Theorem 5.2) and the maximum EIE achieved by the RMP. As

the optimal EIE is within the dual gap, the figure indicates that our

approach can achieve near-optimal after the 4th iteration, where

the approximation ratio (the ratio of the optimal EIE to the EIE

achieved by our approach) is up to 1.064.

As indicated by Fig. 8(a), the algorithm convergence will slow

down afterminl {ζl } reaches a certain level. Hence, it is unnecessary
to wait until minl {ζl } = 0. Instead, we choose to improve the time

efficiency of our algorithm by slightly sacrificing the optimality of

the GO function. We select a negative number ξ < 0 that is close to

0 as a threshold of minl {ζl }, i.e., the algorithm is terminated once

minl {ζl } ≥ ξ . Clearly, a higher value for ξ enforces the derived GO

function to better approximate the optimal, but tends to generate a

higher computation load. Fig. 8(c) shows the number of iterations

of the algorithm and the corresponding EIE values, with ξ values

increased from −1.0 to −0.1. From the figure, we can see that when

ξ reaches a peak (i.e., ξ > −0.3 when K = 1500 and ξ > −0.2
when K = 500 or 1000), the number of required iterations increases

rapidly (by 10 to 20 times), but the corresponding EIE gain is in-

significant. Accordingly, we set ξ such that the number of iterations

is maintained at a low level without significantly affecting EIE (e.g.,

ξ = −0.3 for region “A”) in the following experiment.

Finally, in Fig. 8(d), we list the number of iterations of the algo-

rithm and the corresponding computation time, when the location

sample size (K) equals 550, 1000, and 1500. Fig. 8(d) shows that

the number of iterations is at most 4 and the highest computation

time is 0.28s. Fig. 8(d) also indicates that 1) the number of itera-

tions is not impacted by K significantly, while 2) the computation

time increases with the increase of K , as a higher K leads to higher

computation load for each subproblem in the lower layer of CG.

Privacy and cost. We next evaluate our approach in terms of both

privacy and traveling cost. We ran the simulation for the 9 regions

separately. Each simulation lasts for 60 minutes (from 00:00:00 to

01:00:00 in the trace). We set the parameter ϵ by 1/km for geo-
indistinguishability (ϵ-GI in Definition 3.3).

We first show the EIE and the total traveling cost achieved by our
approach (labeled by CG) in different regions in Fig. 9(a)(b), with

the comparison of the three benchmarks 2D, VSC, and Laplace. All

2D, VSC, and Laplace require ϵ-GI (ϵ is set by 1/km as well). The

two figures indicate that, with higher density of workers, CG in
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Figure 9: Comparison with 2D and VSC.
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Figure 10: Comparison with bounds/idealized scenario.
A, B, and C achieve higher total traveling cost and lower EIE than

other regions. When the density of workers is higher, to guarantee

the optimality of task assignment, the safe region of obfuscated

location needs to be smaller (see Fig. 5(a)(b)). This, on average,

makes the selected obfuscated location closer to the actual worker’s

location, leading to a lower EIE from the adversary.

Moreover, Fig. 9(a) demonstrates that CG is more effective in pro-

tecting worker location privacy than 2D, VSC, and Laplace. Besides

achieving ϵ-GI, CG aims to minimize EIE. ϵ-GI does not always
generate higher EIE, since ϵ-GI primarily aims to control posterior

information exposure and hence to obfuscate location such that dif-

ferent real locations are hard to differentiate. While, methods based

on EIE tend to select obfuscated location with higher distortion

from the real location. Fig. 9(b) indicates that the total traveling

cost follows CG ≈ VSC < 2D < Laplace. CG can better reduce the

total traveling cost compared with 2D and Laplace because 1) CG

considers the workers’ mobility features over roads, 2) CG derives a

safe region for each obfuscated location by considering the worker

distribution over the region, and 3) the GO function in CG is defined

in a fine-grained location set due to the high-efficiency of CG’s

computation framework (e.g., 2D samples 1 location per 1km×1km

grid, while the average distance between neighbor sample point

in CG is less than 100m). While VSC has slightly lower cost than

CG, VSC facilitates cost-effective task assignment by unnecessarily

minimizing cost estimation error at the expense of privacy.

Fig. 10(a) compares the EIE achieved by CG with a theoretical

upper bound (derived in Theorem 5.2), where the ratio of the upper

bound to the EIE in CG ranges from 1.043 to 1.068 across the dif-

ferent regions. As the optimal solution is no higher than the upper

bound, the approximation ratio of CG is at most 1.068, indicating

that CG approximates the optimal EIE closely.

Even though CG achieves lower cost than 2D, it still cannot guar-

antee the optimality of task assignment as the safe region of each

worker’s obfuscation is derived separately with lag information (as

analyzed in Section 4.1). Hence, it is interesting to check how close

CG can achieve the actual lowest cost. Here, we derive the lowest

traveling cost that can be achieved in the following two scenarios

as the benchmarks: 1) when the optimal traveling cost of workers is

estimated by workers’ actual location in the last round, labeled by

(a) Requester (b) Worker

Figure 11: User interface.
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“OPT(lag)”; and 2) when the optimal traveling cost of workers is es-

timated by workers’ actual location in the current round, labeled by

“OPT”. Fig. 10(b) compares the total traveling cost of OPT(lag), OPT,

and CG, and also lists the approximation ratios of CG to OPT(lag)

and OPT, respectively. We have two observations in the figure: 1)

CG in “A”–“C” with higher-density workers, suffer a larger gap

from “OPT(lag)”, since the optimality of task assignment is subject

to change when the worker’s safe region is smaller. 2) In contrast,

the gap between “OPT(lag)” and “OPT” is smaller in “A”–“C”, due to

the higher spatial correlation of workers’ location in these regions,

i.e., workers move relatively more slowly in the downtown area.

6.2 Pilot Study based on Prototype
In addition, we have built a prototype of SC, including the functions

of task request/assignment and geo-obfuscation.We have developed

an Android APP on smartphones based on the Google map API,

where Fig. 11(a)(b) shows the user interface. The APP allows users

to register/log in as a requester/worker. With the APP, a requester

can upload his/her task with the location specified, and a worker

can download a GO matrix from the server. According to the GO

matrix, a worker can select the obfuscated location, and may receive

a task assigned by the server. After then, the worker can accept the

task by clicking “accept” button, and a route will be displayed on

the map to navigate this worker to the task location.

We conduct 20 groups of test, where in each group we deployed

5 workers and 3 tasks (tasks are randomly distributed over a small

town). We sample 1640 discrete locations over the local road net-

work. Every time a worker reports the location, the APP approxi-

mates the worker’s current location by its nearest sampled discrete

location (i.e., measured by the Euclidean distance). Fig. 12(a) and Fig.

12(b) show the EIE and the total traveling cost in different groups,

with the comparison of the EIE’s upper bound ω and the actual

lowest traveling cost, respectively. Fig. 12(c) lists the number of

iterations in CG in each group. The figure demonstrates that our ap-

proach achieves a near-optimal EIE (i.e., with approximation ratio

up to 1.07) with low computation load (i.e., up to 5 iterations). The

approximation ratio of the traveling cost is relatively high (i.e., up

to 1.171) as approximating each true location to its nearest sampled

location inevitably introduces errors to the task assignment.

7 RELATEDWORK
In this section, we summarize the existing works relevant to ours,

including location privacy criteria and obfuscation based strategies.
Location privacy criteria. The discussion of location privacy cri-

teria can date back to more than ten years ago, when Gruteser and

Grunwald [34] first introduced the notion location k-anonymity
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based on the well-known concept of k-anonymity [35]. While dif-

ferent from our approach, location k-anonymity protects users’

privacy by hiding their identities (i.e., it is indistinguishable among

a set of k users’ identities given their location reports). Later, two

privacy notions for location obfuscation have been proposed based

on statistical quantification of attack resilience: EIE [24] and GI

[13]. Both privacy notions have their own limitations and are com-

plementary to each other: EIE based approaches assume certain

types of prior information that the adversary may obtain, but re-

quire no restriction on the posterior information gain from the

exposure of obfuscated locations. GI-based approaches limit the

posterior information leakage through a differential privacy based

criteria, but they are susceptible to the inference attacks using prior

knowledge [17]. As such, recent works (e.g., [17]) have proposed

to strategically combine the two privacy notions to double shield

users’ location privacy.

Obfuscation based approach. Based on the notions of EIE and GI,

a large body of obfuscation based approaches have been proposed

to achieve either of these two privacy criteria (e.g., [13–15, 24, 36])

or their combination [17]. As location information error introduced

by geo-obfuscation may lead to quality loss in LBS, a key issue

that has been discussed in obfuscation based approaches is how to

trade-off privacy and QoS. For example, Shokri et al. [24] advocated

an optimal geo-obfuscation mechanism to maximize the EIE given

the quality loss constraint, where quality loss is measured by the

expected distortion from obfuscated location to actual location. Fol-

lowing by the optimization framework in [24], Theodorakopoulos

et al. [36] proposed to maximize EIE with considering the privacy

leakage due to sequential correlation of locations in user’s trajec-

tory. GI has been also adopted by many recent works [11], [18] as a

privacy constraint. For instance, besides proposing the notion of GI,

Andrés et al. [13] developed a location perturbation technique to

achieve GI by adding noise to actual location, drawn from a polar

Laplacian distribution. Given the restriction of GI, Bordenabe et al.

[14] proposed an optimization framework for geo-obfuscation to

minimize the quality loss (i.e., expected distortion between obfus-

cated and true locations) for each single user, while Wang et al. [15]

considered the quality loss generated by all the users (workers) as a

whole and proposed a location privacy-preserving task assignment

algorithm to minimize the total traveling cost.

In a nutshell, the strategies [14, 15, 24, 36] are all based on the

2D model, which is hardly to be applied to SC over road networks.

In addition, although all these techniques follow an optimization

framework like ours, they rely on centralized approaches that have

to deal with O(K2) decision variables in LP, which generates ex-

tremely high computation load considering the frequently changed

inputs (e.g., highly dynamic traffic) in the optimization. Moreover,

these approaches apply uniform privacy criteria over the whole tar-

get region without considering the different privacy requirements

due to users’ (workers’) uneven density over the region.”

To date, the work closest to ours is [16], which also obfuscates

vehicles’ locations by following an LP framework, with the vehicles’

network-constrained mobility features considered. However, the

LP formulated in [37] is to minimize the cost estimation error of a

single worker. As a result, the derived obfuscation function in [37]

does not consider the distribution (density) of multiple workers,

leading to a uniform privacy level (GI) over the region.

8 CONCLUSIONS
In this paper, we have developed a new geo-obfuscation strategy to

protect workers’ locations over road networks in SC. We modeled

workers’ mobility with considering the road network topology and

dynamic traffic conditions. Our proposed geo-obfuscation approach

follows an LP framework, of which the objective is maximize the

EIE from adversary with the constraints of task assignment cost

and geo-indistinguishability (GI) satisfied. Considering the highly

dynamic inputs of the LP in SC, we devise a time-efficient algorithm

by resorting to DW decomposition. The trace-driven simulation

results have demonstrated the effectiveness of our approach over

the state of the arts in terms of both privacy and QoS.

We see several promising directions for this research. First, our

current work accounts only for homogeneous workers (e.g., either

vehicles or pedestrians), without considering heterogeneous mobile

workers with different mobility features (e.g., a mixture of vehicles

and pedestrians). Also, this work can be extended in general LBS

applications beyond SC, where service utilities are defined in differ-

ent ways. Finally, we plan to consider different threat models where

the information disclosed to adversary is not only users’ uploaded

location (e.g., mobile devices’ accelerometer and gyroscope).
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.1 Pseudo Code of The Column Generation
Algorithm.

Algorithm 1: The column generation algorithm.

input :Λ1, ..., ΛK
output :The optimal solution of MP

1 n ← 1; // Index of iteration

2 for each l = 1, ..., K do

3 X
(n)
l ← {el };

4 do
5 // Step A: Master program

6 (π ∗(n), µ∗(n)) ← D-RMP (X
(n)
1

, ..., X
(n)
K );

7 // Step B: Subproblems to test optimality

8 for each l = 1, ..., K do
9

(
ζ (n)l , x̂(n)l

)
← subl

(
π ∗(n), µ∗(n);Λl

)
;

10 if ζ (n)l < 0 then

11 X
(n+1)
l ← X

(n)
l ∪ x̂

(n)
l ;

12 n ← n + 1;

13 while minl

{
ζ (n−1)l

}
< −ξ ;

14 λ
∗(n)
← RMP (X

(n)
1

, ..., X
(n)
K );

15 return λ
∗(n)

;

Algorithm 1 gives the details of CG, where the superscript
(n)

denotes the values set/derived in iteration n.

In initialization (line 1-3), we set each X
(1)

l = el in Λl , where el is
a K + 1 dimension vector with the lth entry equal to 1 and all the

other entries equal to 0. With e1, ..., eK , the feasible region of the

RMP is non-empty, i.e., there is always a feasible solution λ with

λ1l = 1 and λtl = 0 ∀t > 1 (l = 1, ...,K ), which ensures D-RMP to be

bounded and hence improves the algorithm convergence [32].

After initialization, we repeat Step A (line 5-6) and Step B (line 7-

11) until a near-optimal solution is achieved. In Step A, we derive the

optimal (π∗(n), µ∗(n)) in D-RMP. In Step B, we deliver (π∗(n), µ∗(n))

to each subl and obtain the corresponding

(
ζ
(n)
l , x̂

(n)
l

)
. We check

whether each ζ
(n)
l ≥ 0. If exists ζ

(n)
l < 0, then (π∗(n), µ∗(n)) is

infeasible in MP’s dual problem (according to Proposition 5.1). We

add the extreme point x̂(n)l that leads to the negative ζ
(n)
l to X

(n)
l

(line 13). Step A and Step B are repeated until each ζ
(n)
l is at least

ξ , where ξ (ξ ≤ 0) is a predefined threshold. Finally, we derive the

optimal solution λ
∗(n)

in RMP (line 15), which is the final output.

RMP, D-RMP, and subl can be solved by the simplex method [25].

.2 Proof of Proposition 3.1
Proof. We prove Proposition 3.1 in the following two directions.

For each pair of vk ,vl inV , we have

1) The sum weight of the shortest path from vk to vl is no smaller
than ck ,l . We represent the shortest path fromvk tovl in the graph

G by

P(vk ,vl ) :
(
ek ,k1 , ek1,k2 , ..., ekn−1,l

)
,

where n represents the number of edges. Clearly, the sum weight of

all the edges in P(vk ,vl ) is equal to ck ,k1 +
∑n−2
q=1 ckq ,kq+1 + ckn−1,l .

Given the shortest path P(vk ,vl ) in G, we can always find the

corresponding route R(vk ,vl ) in the road network,

R(vk ,vl ) : vk → vk1 → vk2 → ...→ vkn−1 → vl

https://crawdad.org/roma/taxi/20140717
https://www.dropbox.com/s/czhatj72wzpqrbc/locationprivacy_techreport.pdf?dl=0
https://www.dropbox.com/s/czhatj72wzpqrbc/locationprivacy_techreport.pdf?dl=0
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with the traveling cost ck ,k1 +
∑n−2
q=1 ckq ,kq+1 + ckn−1,l , which is

equal to the sum weight of P(vk ,vl ). Therefore, the optimal route

from vk to vl has its traveling cost ck ,l no higher than R(vk ,vl ),
i.e.,

ck ,l ≤ ck ,k1 +
n−2∑
q=1

ckq ,kq+1 + ckn−1,l . (16)

2) The sum weight of the shortest path from vk to vl is no larger than
ck ,l . For the sake of contradiction, we assume that there exists a

route from vk to vl , denoted by

R ′(vk ,vl ) : vk → vk ′
1

→ vk ′
2

→ ...→ vkn′−1 → vl ,

has its traveling cost ck ,l lower than the sum weight of P(vk ,vl ),
where n′ denotes the number of discrete locations visited in this

route before reaching vl . Given R
′(vk ,vl ), we can also find the

corresponding path in G:

P ′(vk ,vl ) :
(
ek ,k ′

1

, ek ′
1
,k ′

2

, ..., ek ′n−1,l

)
,

which has its sum weight equal to ck ,l and hence has a smaller sum

weight than the shorest path P(vk ,vl ). A contradiction.

According to 1) and 2), the sum weight of the shortest path from

vk to vl is equal to ck ,l . □

.3 Proof of Proposition 5.1
Proof. We first introduce Property .1:

Property .1. λ∗ achieves the optimal of MP if only if (π∗, µ∗) is
a feasible solution of the dual problem of MP (i.e., D-RMP(X1, ...,XK ))
[25].

Based on Property .1, to test λ
∗
’s optimality in MP, it is sufficient

to test whether (π∗, µ∗) satisfies

min

t ∈Xl

{∑
k

x̂tk ,lπ
∗
k + µ

∗
l − x̂

t
K+1,l

}
≥ 0, l = 1, ...,K . (17)

where the derivation of mint ∈Xl

{∑
k x̂

t
k ,lπk + µl − x̂

t
K+1,l

}
is es-

sentially a LP problem (labeled by subl ) with the decision variables

xl constrained in the polyhedron Λl :

x∗l =
{

min

∑
k xk ,lπ

∗
k + µ

∗
l − xK+1,l

s.t. xl ∈ Λl .

}
︸                                           ︷︷                                           ︸

subl

(18)

□

.4 Proof of Theorem 5.2
Proof. In each iteration n, according to the definition of ζl , we

can obtain that

min

xl ∈Λl

{∑
k

xk ,lπ
∗(n)
k +

(
µ
∗(n)
l − ζ

(n)
l

)
− xK+1,l

}
= 0,

which indicates that

π
∗(n)
1
, ...π

∗(n)
K ,

(
µ
∗(n)
1
− ζ
(n)
1

)
, ...,

(
µ
∗(n)
K − ζ

(n)
K

)

constructs a feasible solution of the dual problem of MP. Hence, the

corresponding objective value in the dual problem∑
k

π
∗(n)
k +

∑
l

(
µ
∗(n)
l − ζ

(n)
l

)
offers an upper bound of the optimal solution of MP (according to

weak duality [25]). □
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